• Title/Summary/Keyword: waste rock

Search Result 363, Processing Time 0.027 seconds

Heavy Metal Stabilization in Soils using Waste Resources - A Critical Review (폐자원을 이용한 중금속 오염토양의 안정화 - 총설)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Yang, Jae E;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.157-174
    • /
    • 2015
  • Stabilization of metals in contaminated soils using various waste materials has been reported. Alkaline materials (limes, shells, industrial byproducts, etc.), phosphorous (P) containing materials (animal bones, phosphate rock, etc.), organic materials (composts, manures, biochars, etc.) and others (zerovalent iron, zeolite, etc.) were widely evaluated to ensure its effectiveness/applicability of stabilization of metals in soils. Stabilization mechanisms of those materials above were partially revealed, but the related literatures are still lacked and not sufficient for approaching to long-term stability/applicability in the field. The aims of this review are to summarize current knowledge of metal stabilization in contaminated soils using various waste materials and to suggest a direction for future field research.

A Study on the Application of Landfill Liners with Stone Dust Sludge (석분슬러지를 이용한 쓰레기매립장 차수재의 적용성에 관한 연구)

  • Cho, Jae-Hyung;Yoon, Tae-Gook;Yeo, Byeong-Chul;Ahn, Sang-Ro;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.483-490
    • /
    • 2005
  • At present around 50 companies have their own crushing plants, which manufacture rock into crushed sand, over around 350 different quarry throughout the nation. However, in most plants the stone dust sludge is left as it is in their plants so that they have difficulty to utilize. Furthermore, environmental pollution may be even caused due to dust generated when it is dried. Recycling is starting capturing the attention of the people working over the quarry due to the reasons described above. This research has studied in the quarters the usability as landfill liner of the stone dust sludge, which is industrial waste. We investigated what technological properties it would have after mixing the stone dust sludge with SM(sandy soil) first and then with blast furnace slag or reject ash, which is waste, and cement as the stabilizer. As the result of three tests; compacting test, strength test, and permeability test; to satisfy the regulatory guideline of the government that is the compress strength over 5 $kgf/cm^2$, the flexibility over 1 $kgf/cm^2$, and the permeability under $1.0{\times}10^{-7}cm/sec$ From this research, we could confirm that stone dust sludge would be used as waste landfill liner if it were mixed with other waste by the proper mixing ratio.

  • PDF

Influence of EDZ on the Safety of a Potential HLW Repository

  • Hwang Yong-Soo;Kang Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2004
  • Construction of tunnels in a deep crystalline host rock for a potential High-Level Radioactive Waste(HLW) repository inevitably generates an excavation disturbed zone (EDZ). There have been a series of debates on whether a permeability in an EDZ increases or not and what would be the maximum depth of an EDZ. Recent studies show mixed opinions on permeability. However, there has been an international consensus on the thickness of an EDZ; 30 cm for TBM and 1 meter for controlled blast. One of the impacts of an EDZ is on determining the distance between adjacent deposition holes. The void gap by the excavation hinders relaxation of temperature profiles so that the current Korean reference designing distance between holes should be stretched out more to keep the maximum temperature in a buffer region below 100 degrees Celsius. The other impact of an EDZ is on the long-term post closure radiological safety. To estimate the impact, the reference scenario, the well scenario, is chosen. Released nuclides diffuse through a bentonite buffer region experiencing strong sorption and reach a fracture surrounded by a porous medium. Inside a fractured porous region, radionuclides migrate by advection and dispersion with matrix diffusion into a porous medium. Finally, they reach a well assumed to be a source of potable water for local residents. The annual individual dose is assessed on this well scenario to find out the significance of an EDZ. A profound sensitivity study was performed, but all results show that the impact is negligible. Even though the role of an EDZ turns out to be limited on overall safety assessment, still it is worthwhile to study the chemical role of an EDZ, such as a potential source for natural colloids, potential sealing of an open fracture by fine clay particles generated by the process of an EDZ, and alteration of a sorption mechanism by an EDZ in the future.

  • PDF

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.

Characteristics of Stream and Soil Contamination from the Tailing Disposal and Waste Rocks at the Abandoned Uljin Mine (울진 폐광산의 매립광미와 폐광석에 의한 주변 토양 및 수계의 오염특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.63-79
    • /
    • 2008
  • Physicochemical characteristics of stream water, leachate, mine water and groundwater were investigated to estimate the influences of the tailing and waste rock from the abandoned Uljin mine area. Total extraction analysis and mineralogical studies were carried out to understand sulfide weathering and to determine the distributions of trace elements in the soil affected by mine waste (tailing, waste rock and leachate). The pH and EC value of the leachate from the tailing disposal ranged 2.9-6.0, $99{\sim}3,990{\mu}S/cm$, respectively, and the concentrations of dissolved major (up to 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K, 50.8 mg/l Si) and trace elements (up to $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb) were relatively high. The stream water showed the variation of dissolved metal concentrations in seasonally and spatially. The dissolved metal contents of the stream water increased by influx the leachate from the tailing disposal, but these of the down stream have been considerably decreased by mixing of dilute tributaries. The dissolved metal concentrations of the stream water at dry season (as February) were lower than these at rainy season (as May and July). These represent that the amounts of the leachate varied with season. However, stream water could not be effectively diluted by confluence with uncontaminated tributaries, because the flux of tributaries and streams reduced at dry season. Thus attenuations by dilution had been dominantly happened in rainy seasons. The order of accumulations of trace element in soils compared with background values revealed Mn>Fe>Pb>Cu>Zn. Sulfide minerals were mainly pyrrhotite, sphalerite and galena and chalcopyrite. Pyrrhotite was rapidly weathered along the edge and fractures, and results in the formation of Fe-(oxy)hydroxides, which absorbed a little amount of Zn.

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Review of Site Characterization Methodology for Deep Geological Disposal of Radioactive Waste (방사성폐기물의 심층 처분을 위한 부지특성조사 방법론 해외 사례 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Jo, Yeonguk;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.239-256
    • /
    • 2017
  • In the process of site selection for a radioactive waste disposal, site characterization must be carried out to obtain input parameters to assess the safety and feasibility of deep geological repository. In this paper, methodologies of site characterization for radioactive waste disposal in Korea were suggested based on foreign cases of site characterization. The IAEA recommends that site characterization for radioactive waste disposal should be performed through stepwise processes, in which the site characterization period is divided into preliminary and detailed stages, in sequence. This methodology was followed by several foreign countries for their geological disposal programs. General properties related to geological environments were obtained at the preliminary site characterization stage; more detailed site characteristics were investigated during the detailed site characterization stage. The results of investigation of geology, hydro-geology, geochemistry, rock mechanics, solute transport and thermal properties at a site have to be combined and constructed in the form of a site descriptive model. Based on this site descriptive model, the site characteristics can be evaluated to assess suitability of site for radioactive waste disposal. According to foreign site characterization cases, 7 or 8 years are expected to be needed for site characterization; however, the time required may increase if the no proper national strategy is provided.

Construction Performance of High Strength Concrete Utilizing Wasted Limestone Coarse Aggregates (석회암 폐석 굵은골재를 사용한 고강도 콘크리트의 시공)

  • Han, Cheon-Goo;Kim, Ki-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.545-551
    • /
    • 2015
  • The aim of this research is suggesting application method of the wasted rock obtained from the limestone quarry of raw material for cement as a coarse aggregate for high strength concrete after crushing and sieving processes. The wasted rock has been normally wasted because of its low quality as a material for cement production. In this research, the concrete using this wasted limestone coarse aggregate was evaluated the constructability based on the performances of workability, air content, and compressive strength. From the experiment, a favorable performance was achieved with a limestone coarse aggregate for high strength concrete comparing to the high strength concrete using granite coarse aggregate.

Mechanics of the slaking of shales

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-231
    • /
    • 2011
  • Waste fills resulting from coal mining should consist of large, free-draining sedimentary rocks fragments. The successful performance of these fills is related to the strength and durability of the individual rock fragments. When fills are made of shale fragments, some fragments will be durable and some will degrade into soil particles resulting from slaking and inter-particle point loads. The degraded material fills the voids between the intact fragments, and results in settlement. A laboratory program with point load and slake durability tests as well as thin section examination of sixty-eight shale samples from the Appalachian region of the United States revealed that pore micro-geometry has a major influence on degradation. Under saturated and unsaturated conditions, the shales absorb water, and the air in their pores is compressed, breaking the shales. This breakage was more pronounced in shales with smooth pore boundaries and having a diameter equal to or smaller than 0.060 mm. If the pore walls were rough, the air-pressure breaking mechanism was not effective. However, pore roughness (measured by the fractal dimension) had a detrimental effect on point load resistance. This study indicated that the optimum shales to resist both slaking as well as point loads are those that have pores with a fractal dimension equal to 1.425 and a diameter equal to or smaller than 0.06 mm.