Characteristics of Stream and Soil Contamination from the Tailing Disposal and Waste Rocks at the Abandoned Uljin Mine

울진 폐광산의 매립광미와 폐광석에 의한 주변 토양 및 수계의 오염특성

  • Lee, In-Gyeong (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 이인경 (충북대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Published : 2008.02.28

Abstract

Physicochemical characteristics of stream water, leachate, mine water and groundwater were investigated to estimate the influences of the tailing and waste rock from the abandoned Uljin mine area. Total extraction analysis and mineralogical studies were carried out to understand sulfide weathering and to determine the distributions of trace elements in the soil affected by mine waste (tailing, waste rock and leachate). The pH and EC value of the leachate from the tailing disposal ranged 2.9-6.0, $99{\sim}3,990{\mu}S/cm$, respectively, and the concentrations of dissolved major (up to 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K, 50.8 mg/l Si) and trace elements (up to $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb) were relatively high. The stream water showed the variation of dissolved metal concentrations in seasonally and spatially. The dissolved metal contents of the stream water increased by influx the leachate from the tailing disposal, but these of the down stream have been considerably decreased by mixing of dilute tributaries. The dissolved metal concentrations of the stream water at dry season (as February) were lower than these at rainy season (as May and July). These represent that the amounts of the leachate varied with season. However, stream water could not be effectively diluted by confluence with uncontaminated tributaries, because the flux of tributaries and streams reduced at dry season. Thus attenuations by dilution had been dominantly happened in rainy seasons. The order of accumulations of trace element in soils compared with background values revealed Mn>Fe>Pb>Cu>Zn. Sulfide minerals were mainly pyrrhotite, sphalerite and galena and chalcopyrite. Pyrrhotite was rapidly weathered along the edge and fractures, and results in the formation of Fe-(oxy)hydroxides, which absorbed a little amount of Zn.

울진광산 지역에 매립된 광미와 방치된 폐광석이 주변 하천에 미치는 영향을 평가하기 위해, 하천수, 침출수, 갱내수 및 지하수의 물리화학적인 특성을 파악하였다. 또한 폐광석 내 황화광물의 풍화 특징을 파악하기 위한 광물학적 연구와, 토양 내 미량원소의 분산 특성을 파악하기 위한 총함량 분석을 수행하였다. 매립된 광미에서 발생하는 침출수의 pH의 범위는 $2.9{\sim}6.0$이며, EC는 $99{\sim}3990{\mu}S/cm$로 주원소(최대 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K; 50.8 mg/l Si) 및 미량원소(최대 $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb)함량이 높게 나타났다. 하천수의 물리화학적 특성은 침출수와 지류의 유입에 따른 공간적 변화와 강수량에 따른 시기별 변화가 관찰되었다. 침출수의 유입으로 하천수의 용존 이온의 농도는 증가하지만 오염되지 않은 지류와의 혼합에 의한 희석작용으로 하류로 갈수록 감소한다. 건기인 2월에는 침출수 유입량이 줄어 하천수의 용존 이온 함량이 우기보다 낮다. 하지만 건기에는 지류 및 하천수의 유량 감소로 인하여 희석작용이 상대적으로 미약하여 우기에 비해 오염 확산 범위가 더 넓은 것으로 확인되었다. 배경치와 비교한 울진광산 주변의 토양시료의 중금속 농집 순서는 망간>철>납>구리>아연으로 나타났다. 울진광산에서 산출되는 황화광물은 자류철석과 섬아연석이 주를 이루며, 방연석과 황동석이 수반된다. 이 중 자류철석이 가장 풍화가 빠르게 진행되었으며, 광물 내부에 발달된 균열부와 입자 가장 자리를 따라 내부로 산화가 진행되어 철수산화광물이 생성되며, 소량의 Zn을 흡착하는 것으로 밝혀졌다.

Keywords

References

  1. Ahn, J.S., Kim, J.Y., Cheon, C.M. and Moon, H.S. (2003) Mineralogical and chemical characterization of arsenic solid phases in weathered mine tailing and their leaching potential, Econ. Environ. Geol., v. 36, p.27- 38
  2. Francisco Velasco, Ana Alvaro, Saioa Suarez, Joes-Miguel Herrero, Ianki Yusta (2005) Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain) Journal of Geochemical Exploration v.87 p.45-72 https://doi.org/10.1016/j.gexplo.2005.07.002
  3. Jambor J.L. (1994) Mineralogy of sulfide rich tailings and their oxidation products. In: Jambor J. L., Blowes DW (eds) Environmental geochemistry of sulfide minewastes. Mineralogical Association of Canada Short Course 22, Mineralogical of Canada, Nepean, Canada, p.59-102
  4. Javier Sanchez Espana, Enrique Lopez Pamo, Esther Santofimia Pastor (2007) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel Basin, Huelva, Spain): Field and laboratory rates. Journal of Geochemical Exploration, v.92, p.120-132 https://doi.org/10.1016/j.gexplo.2006.08.010
  5. Javier Sánchez España, Enrique López Pamo, Esther Santofimia, Osvaldo Aduvire, Jesús Reyes, Daniel Barettino (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry v.20, p.1320-1356 https://doi.org/10.1016/j.apgeochem.2005.01.011
  6. Lee, J. E., Kim,Y. K. and Choo, C. O. (2003) Hydrogeochemistry and comparison of leachate and effluent from the Dalsung mine. Journal of the Geological Society of Korea. v.39, p.519-533
  7. Lee, I.G, Lee, P.K., Choi, S.H, Kim, J.S. and So, C.S. (2005) Chemical Speciation of Heavy Metals in Geologic Environments on the Abandoned Jangpoong Cu Mine Area, Econ. Environ. Geol., v.38, p.699-705
  8. Lee, P.K., Kang, M.J., Choi, S.H. and Touray, J.C. (2005) Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea, Appl. Geochem., v.20, p.1687-1703 https://doi.org/10.1016/j.apgeochem.2005.04.017
  9. Lee, P.K., Lee, I.G., Choi, S.H. and Kim, J.S. (2004) The oxidation of chalcopyrite and geochemical behavior of heavy metals in the Manjang Cu mine. Econ. Environ. Geol., v.37, p.291-301
  10. Lee, S.H, Kim, Y.J. and Choi, B.Y. (1993) Geological Map of Korea: Jookbeon-Imwonjin sheet(1:50,000), KIGAM, Korea, 20p
  11. Pratt A. R., Muor I.J. and Nesbitt H. W. (1994a) X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim Cosmochim Acta, v.58, p.827-841 https://doi.org/10.1016/0016-7037(94)90508-8
  12. Pratt A. R., Muor I.J. and Nesbitt H. W. (1994b) Generation of acids from mine waste: oxidative leaching of pyrrhotite in dilute $H_2SO_4$ solutions at pH 3.0. Geochim Cosmochim Acta, v.58, p.5147-5159 https://doi.org/10.1016/0016-7037(94)90300-X
  13. Prieto, G. (1998) Geochemistry of heavy metals derivedfrom gold-bearing sulphide minerals in the Marmato District (Columbia). Journal of Geochemical Exploration, v.64, p.215-222 https://doi.org/10.1016/S0375-6742(98)00034-X
  14. McGregor, R.G., Blowes, D.W., Jambor, J.L. and Robertson, W.D. (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. Journal of Contaminant Hydrology, v.33, p.247-271 https://doi.org/10.1016/S0169-7722(98)00060-6
  15. Shaw, S.C., Groat, L.A., Jambor, J.L., Blowes, D.W., Hanton- Fong, C.J. and Stuparyk, R.A. (1998) Mineralogical study of base metal tailings with various sulfide contents, oxidized in laboratory columns and field lysimeters. Environmental geology, v.33, p.209-217 https://doi.org/10.1007/s002540050239
  16. Yun, S. (1979) Structural and compositional characteristics of skarn Zinc-Lead deposits in the Yeonhwa- Ulchin Mining District, Southeastern Taebaegsan Region, Korea, J. Korea Inst. Mining Geol., v.12, p.51-73
  17. Yun, S. and Marco T. Einaudi (1982) Zinc-Lead skarns of the Yeonhwa-Ulchin district, South Korea, Economic Geology, v.77, p.1013-1032 https://doi.org/10.2113/gsecongeo.77.4.1013
  18. Yu, J.Y. and Heo, B. (2001) Dilution and removal of dissolved metals from acid mine drainage along Imgok Creek, Korea. Applied Geochemistry, v.16, p.1041-1053 https://doi.org/10.1016/S0883-2927(01)00017-8