• Title/Summary/Keyword: waste powder

Search Result 592, Processing Time 0.043 seconds

Fabrication and Mechanical Properties of the Hybrid Composites Filled with Waste Stone and Tire Powders (폐석분-폐타이어 분말 충전 혼성복합재료의 제조 및 기계적 특성)

  • 황택성;이승구;차기식
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.774-781
    • /
    • 2001
  • In order to reuse the waste matters, the polyester hybrid composites were fabricated with the waste stone (WSP) and waste tire (WTC). Before mixing, the waste fillers were treated with the silane coupling agent [${\gamma}$-methacryloxy propyl trimethoxy silane(${\gamma}$-MPS)] for enhancing the dispersion of the fillers and interfacial bonding with polymer matrix. Mechanical properties and morphologies of the resulted hybrid composites were investigated with the filler content. The hybrid composites containing surface treated fillers have high initial thermal decomposition temperature and low weight loss compared to the untreated one. The highest mechanical properties of composites were obtained with the ${\gamma}$-MPS (2 wt%) treated fillers. The porosity of composite increased with the content of organic filler which can be reduced by the silane surface treatment of fillers. The pore size distribution of the composites varied with the waste filler content.

  • PDF

Effects of Food Waste Mixed Organic Fertilizer Treatment on Growth and Yield of Capsicum annuum

  • Ho-Jun Gam;Yosep Kang;Eun-Jung Park;Seong-Heon Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.109-109
    • /
    • 2022
  • The global population is increasing every year, and the amount of food waste is also increasing. Direct landfilling of food waste has been prohibited since 2005, and in accordance with the London Convention in 2013, the discharge of livestock manure, sewage sludge, and food waste into the sea is prohibited. In the case of incineration to treat the discharged food waste, the heat point is lowered due to the moisture in the food waste itself, so fuel must be added. Therefore, this study was conducted to get basic data for setting the limit of application by investigating the growth and yield of crops after treating food waste dry powder mixed fertilizer (MF) on red pepper. In the experiment, continuous cultivation was carried out for two years in 2021 (1st year) and 2022 (2nd year). The treatment groups were set as Not Treatment (NT), Chemical Fertilizer (CF), Mixed Fertilizer (MF), Mixed Fertilizer×2 (MF×2). After harvest, crop growth and yield were investigated. As a result of the 1st years of growth survey, CF, MF, MF×2 show significant difference in shoot length compared to NT. About fresh weight and dry weight, CF show significant difference compared to NT. The 2nd years of growth survey, the shoot and root length, fresh weight did not show significant difference with NT. In case of dry weight, MF is significant increased compared to NT. As a result of the yield survey of the 1st year, all treatment groups did not show a significance in yield compared to the NT. In case of 2nd year, all treatment groups show significantly increased value compared to NT. The yield of MF was highest among the treatment groups. In the future, it is thought that it is necessary to quantitatively evaluate the effect of food waste dry powder mixed fertilizer through additional experiments and continuous cultivation, and to establish an appropriate amount of use and establishment of a manual based on this.

  • PDF

Effect of Continuous Treatment of Mixed Organic Fertilizer With Food Waste on the Growth and Yield of Solarium lycopersicum

  • Ho-Jun Gam;Yosep Kang;Eun-Jung Park;Seong-Heon Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.110-110
    • /
    • 2022
  • According to the statistics of the Ministry of Environment, the amount of food waste generated in Korea is 15,903 tons, which accounts for about 30% of the daily household waste. Food waste in Korea is on the rise, and various odors, greenhouse gases, and leachate generated in the process of discharging, transporting, and processing are emerging as social problems. Accordingly, there is a need for a method for recycling food waste. Therefore, this study was carried out to establish an appropriate limiting dose by manufacturing fertilizer mixed with food waste powder and treating it on tomatoes to investigate the growth and yield of crops. The experiment was carried out with continuous cultivation in 2021 (1st year) and 2022 (2nd year), and the treatment groups were set to No Treatment (NT), Chemical Fertilizer (CF), Mixed Fertilizer (MF), and Mixed Fertilizer×2 (MF×2). As a result of the 1st year growth survey, shoot and root length did not show a significant difference between the treatment groups, and the fresh weight showed a significant difference between the MF and MF×2. As a result of the 2nd year growth survey, there was no significant difference in shoot length, root length, and dry weight between the treatment groups, and the fresh weight of the CF was significantly greater than that of the MF×2. The yield of 1st year, MF×2 increased significantly compared to other treatment groups. In the case of 2nd year, CF, and MF×2 show significantly high values compared to NT. Judging from these results, continuous cultivation using food waste powder mixed fertilizer did not have a significant effect on crop growth and yield. However, it is considered that several studies including continuous cultivation experiments are needed to accurately set the appropriate application amount and limit the application amount of the mixed fertilizer for food waste.

  • PDF

A Study on Innovative Metallic Fuel Shapes and Their Manufacturing Requirements

  • Lee, YoungHo;Park, SangGyu;Lee, ByoungOon;Kim, KiHo;Park, JeongYong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.143-144
    • /
    • 2018
  • In order to develop innovative metallic fuels with improved economy and enhanced safety of SFR, it is necessary to develop powder manufacturing technology for applying additive manufacturing technology.

  • PDF

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.