• Title/Summary/Keyword: waste ceramic powder

Search Result 51, Processing Time 0.025 seconds

Re-hydration of Heat-treated $CaO-SiO_2-H_2O$ System and Their Application under Hydrothermal Condition (열처리한 $CaO-SiO_2-H_2O$계의 수열반응과 이의 응용에 관한 연구)

  • 윤철현;송태웅
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.11
    • /
    • pp.1387-1395
    • /
    • 1994
  • Re-hydration properties of heated and ground CaO-SiO2-H2O system were studied under hydrothermal condition in order to examine the possibility of recycling ALC waste as raw materials of ALC. Powder of calcium silicate hydrates and ALC waste without heat treatment did not show further hydration while those of heat-treated at proper temperature showed re-hydration properties under hydrothermal condition. The lath-like shape of initially synthesized tobermorite was gradually turned into small debris during heating and plate-like tobermorite was crystallized during re-hydration of the heated powders. Heated and ground ALC waste could be added to natural raw mix for ALC at the ammount up to 20% with increased compressive strength and up to 30% with slightly decreased compressive strength. The optimum heating temperature of ALC for recycling was about 50$0^{\circ}C$.

  • PDF

Study on sintering process of woodceramics from the cashew nutshell waste

  • Kieu, Do Trung Kien;Phan, DinhTuan;Okabe, Toshihiro;Do, Quang Minh;Tran, Van Khai
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.472-478
    • /
    • 2018
  • In this study, the sintering mechanism of woodceramics (WCs) from cashew nut shell waste (CNSW) was studied by analyzing chemical reactions and structural changes during the sintering process of of CNSW powder, liquefied wood and green bodies of WCs at $900^{\circ}C$ for 60 minutes in the $CO_2$ atmosphere. The chemical and structural properties of the products were investigated by X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM). The results showed that the decomposition reactions of liquefied wood and CNSW occurred simultaneously to form the hard carbon and the soft carbon at high temperature. The sintering mechanism of WCs has been presented.

Comparative Analysis of Various Industrial By-Products Pozzolanic Activity (다양한 산업부산물들의 포졸란 반응성 비교분석)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.32-33
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known pozzolanic materials. Uncondensed and densified silica fume, two ASTM class F fly ashes with different calcium contents, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property were chosen for comparison. Drop in electrical conductivity at 40℃ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at 450~500℃ was also measured used to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by various waste materials.

  • PDF

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.

Sintering Properties of Renewed ${Al_2}{O_3}$Ceramics with Particle Size and Addition Amount of Recycling Powder (재활용원료의 첨가량과 입경에 따른 재생 ${Al_2}{O_3}$ 세라믹스의 소결 특성)

  • 신대용;한상목;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1123-1131
    • /
    • 2001
  • The sintering behaviors of the renewed $Al_2$O$_3$ceramics were investigated as functions of the addition amount and particle size of recycling $Al_2$O$_3$powder, such as crushed powder of structural $Al_2$O$_3$ceramics and waste $Al_2$O$_3$adsorbent, were investigated. Pure $Al_2$O$_3$sample was fabricated by sintered at 1,$650^{\circ}C$ for 5h and it was crushed into powder (-40${\mu}{\textrm}{m}$and +40${\mu}{\textrm}{m}$ in particle size) by thermal shock treatment and crushing. Then, 10~50wt% of crushed $Al_2$O$_3$powder and waste $Al_2$O$_3$adsorbent were mixed with pure $Al_2$O$_3$powder and were subjected to re-sintering to renewed $Al_2$O$_3$sample. The density and the 3-point bending strength increased with increasing the sintering temperature without regard to the addition amount and particle size of recycling $Al_2$O$_3$powder, and that of the samples at the same sintering temperature decreased with increasing the addition amount and particle size of recycling $Al_2$O$_3$powder. Samples over 200 Mpa of 3-point bending strength were obtained by mixing ~30wt% of crushed $Al_2$O$_3$powder(-40${\mu}{\textrm}{m}$), ~20wt% of crushed $Al_2$O$_3$powder (+40${\mu}{\textrm}{m}$) and 10wt% of waste $Al_2$O$_3$adsorbent. 5~20wt% of waste glass powder containing renewed $Al_2$O$_3$samples for densification were fabricated by sintered at 1200~1$650^{\circ}C$ for 5h. The temperature of maximum density and 3-point bending strength decreased with increasing the addition amount of waste glass powder, however, these samples at above 140$0^{\circ}C$ showed lower density and bending strength than renewed $Al_2$O$_3$samples. The addition of waste glass powder did not improved the densification of renewed $Al_2$O$_3$sample.

  • PDF

The effect of wollastonite powder with pozzolan micro silica in conventional concrete containing recycled aggregate

  • Dinh-Cong, Du;Keykhosravi, Mohammad. H.;Alyousef, Rayed;Salih, Musab N.A.;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Poi-Ngian, Shek
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.541-552
    • /
    • 2019
  • Construction development and greenhouse gas emissions have globally required a strategic management to take some steps to stain and maintain the environment. Nowadays, recycled aggregates, in particular ceramic waste, have been widely used in concrete structures due to the economic and environmentally friendly solution, requiring the knowledge of recycled concrete. Also, one of the materials used as a substitute for concrete cement is wollastonite mineral to decrease carbon dioxide (CO2) from the cement production process by reducing the concrete consumption in concrete. The purpose of this study is to investigate the effect of wollastonite on the mechanical properties and durability of conventional composite concrete, containing recycled aggregates such as compressive strength, tensile strength (Brazilian test), and durability to acidic environment. On the other hand, in order to determine the strength and durability of the concrete, 5 mixing designs including different wollastonite values and recovered aggregates including constant values have been compared to the water - cement ratio (w/c) constant in all designs. The experimental results have shown that design 5 (containing 40% wollastonite) shows only 6.1% decrease in compressive strength and 4.9% decrease in tensile strength compared to the control plane. Consequently, the use of wollastonite powder to the manufacturing of conventional structural concrete containing recycled ceramic aggregates, in addition to improving some of the properties of concrete are environmentally friendly solutions, providing natural recycling of materials.

Physical Properties of Light Weight Foamed Glass Using Waste Glass Powder and Fly Ash (폐유리분말과 플라이애시를 사용한 경량 발포소재의 물리적 특성)

  • Song, Hun;Shin, Hyeon-Uk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.328-334
    • /
    • 2015
  • Building insulation materials use for the purpose of energy saving. Insulation materials can be classified inorganic and organic insulation materials. Inorganic insulation is used for fire resistive performance parts and organic insulation is used for thermal performance parts. Meanwhile, organic insulation is due to toxic gas emission in fire. Inorganic insulation is too heavy and low thermal performance than organic materials. This study is focused on evaluation of the physical properties of inorganic foam material using industrial by-products such as waste glass powder and fly ash. From the test result, inorganic foam materials for the applicability of fire-resistance and insulation light-weight materials.

Synthesis of Barium Ferrite Powder by the Coprecipitation Method using Iron Pickling Waste Acid

  • Youngjae Shim;Kim, Dong-Whan;Kim, Guk-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.401-404
    • /
    • 2001
  • Barium ferrite powders were synthesized by the coprecipitation method using iron-pickling waste acid (IPWA) and BaCl$_2$$.$2H$_2$O as raw materials. Fe$\^$2+/ ions in the IPWA, which contains both Fe$\^$2+/ and Fe$\^$3+/ ions, were oxidized into Fe$\^$3+/ ions using H$_2$O$_2$. Proper amount of BaCl$_2$$.$2H$_2$O was dissolved into the oxidized IPWA. Using NaOH, Ba$\^$2+/ and Fe$\^$3+/ ions were coprecipitated as Ba(OH)$_2$and Fe(OH)$_3$. The coprecipitated Ba(OH)$_2$and Fe(OH)$_3$were washed and dried. Barium ferrite powders were obtained by calcining the dried Ba(OH)$_2$and Fe(OH)$_3$mixture from 400$\^{C}$ to 1000$\^{C}$ with a 100$\^{C}$ interval. Barium ferrite powders were characterized by X-ray diffraction, SEM, and VSM. It was found that barium ferrite powders could be synthesized at around 630$\^{C}$. The synthesized barium ferrite powders showed hexagonal plate shapes with a fairly uniform size. The barium ferrite powder calcined at 900$\^{C}$ showed good magnetic properties, saturation magnetization of 67emu/g and maximum coercivity of 5000 Oe.

  • PDF

Fabrication of Nanowire by Electrospinning Process Using Nickel Oxide Particle Recovered from MLCC (MLCC에서 회수된 산화니켈 분말의 전기방사공정을 통한 나노와이어 제조)

  • Haein Shin;Jongwon Bae;Minsu Kang;Kun-Jae Lee
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.502-508
    • /
    • 2023
  • With the increasing demand for electronic products, the amount of multilayer ceramic capacitor (MLCC) waste has also increased. Recycling technology has recently gained attention because it can simultaneously address raw material supply and waste disposal issues. However, research on recovering valuable metals from MLCCs and converting the recovered metals into high-value-added materials remains insufficient. Herein, we describe an electrospinning (E-spinning) process to recover nickel from MLCCs and modulate the morphology of the recovered nickel oxide particles. The nickel oxalate powder was recovered using organic acid leaching and precipitation. Nickel oxide nanoparticles were prepared via heat treatment and ultrasonic milling. A mixture of nickel oxide particles and polyvinylpyrrolidone (PVP) was used as the E-spinning solution. A PVP/NiO nanowire composite was fabricated via E-spinning, and a nickel oxide nanowire with a network structure was manufactured through calcination. The nanowire diameters and morphologies are discussed based on the nickel oxide content in the E-spinning solution.

Synthesis of Alinite Cement Using Combustion Ash of Solid Wastes (고형 폐기물 소각재를 이용한 alinite 시멘트의 합성)

  • 강현주;홍성수;임계규;오희갑;김정석;민경소
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.768-773
    • /
    • 2000
  • Alnite clinker, which is based on CaO-SiO2-CaCl2 system, was synthesized by recycling Cl-containing waste, and its hydraulic properties were onvestigated. Alinite coinkers with two different chemical compositions were burned for 10∼30 minutes in the range of temperature, 1350∼1450$^{\circ}C$. The microstructures of those clinkers were characterized by powder X-ray diiffracuion analysis, optical microscope, and scanning electronic microscope and heat of hydration of alinite cements which was measured in order to investigate hydraulic properties. X-ray analysis shwoed that f-CaO in both clinkers with different compositions significantly was decreased with transforming C2S(belite) to C3S(alite). From the results of microscopy and scanning electron microscopy(SEM), crystal of synthesized alite(C3S) was larger and better crystallinity than that of ordinary portland cement.

  • PDF