Study on sintering process of woodceramics from the cashew nutshell waste

  • Kieu, Do Trung Kien (Faculty of Materials Technology, Ho Chi Minh city University of Technology) ;
  • Phan, DinhTuan (Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment) ;
  • Okabe, Toshihiro (Shibaura Institute of Technology Graduate school Cooperative Graduate School System) ;
  • Do, Quang Minh (Faculty of Materials Technology, Ho Chi Minh city University of Technology) ;
  • Tran, Van Khai (Faculty of Materials Technology, Ho Chi Minh city University of Technology)
  • Published : 2018.12.01

Abstract

In this study, the sintering mechanism of woodceramics (WCs) from cashew nut shell waste (CNSW) was studied by analyzing chemical reactions and structural changes during the sintering process of of CNSW powder, liquefied wood and green bodies of WCs at $900^{\circ}C$ for 60 minutes in the $CO_2$ atmosphere. The chemical and structural properties of the products were investigated by X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM). The results showed that the decomposition reactions of liquefied wood and CNSW occurred simultaneously to form the hard carbon and the soft carbon at high temperature. The sintering mechanism of WCs has been presented.

Keywords

Acknowledgement

Supported by : Vietnam National University Ho Chi Minh City (VNU-HCM)

References

  1. O. Ioannidou, and A. Zabaniotou, Renew. Sust. Energ. Rev. 11[9] (2000) 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013
  2. L.L. Zhang, and X.S. Zhao, Chem. Soc. Rev. 38[9] (2009) 2520-2531. https://doi.org/10.1039/b813846j
  3. W.E. Lee, and S. Zhang, Int. Mater. Rev. 44[3] (1999) 77-104. https://doi.org/10.1179/095066099101528234
  4. J. Cao, Q. Wang, and H. Dai, Phys. Rev. Lett. 90[15] (2003) 157601. https://doi.org/10.1103/PhysRevLett.90.157601
  5. A. Kumar, M. Gaim, D. Steininger, A.L. Yeyati, A. Martin-Rodero, A.K. Huttel, and C. Strunk, Phys. Rev. B: Condens. Matter 89 (2014) 075428. https://doi.org/10.1103/PhysRevB.89.075428
  6. A. Bianco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9[6] (2005) 674-679. https://doi.org/10.1016/j.cbpa.2005.10.005
  7. T. Okabe, K. Saito, and K. Hokkirigawa, J. Porous Mater. 2[3] (1995) 215-221. https://doi.org/10.1007/BF00488111
  8. Y. Tao, P. Li, and S.Q. Shi, Materials 9[7] (2016) 540. https://doi.org/10.3390/ma9070540
  9. H.M. Cheng, H. Endo, T. Okabe, K. Saito, and G.B. Zheng, J. Porous Mater. 6[3] (1999) 233-237. https://doi.org/10.1023/A:1009684014651
  10. T. Okabe, K. Kakishita, H. Simizu, K. Ogawa, Y. Nishimoto, A. Takasaki, T. Suda, M. Fushitani, H. Togawa, M. Sata, and R. Yamamoto, Trans. Matter. Res. Soc. Japan 38[2] (2013) 191-194. https://doi.org/10.14723/tmrsj.38.191
  11. J. Pan, X. Cheng, X. Yan, and C. Zhang, J. Eur. Ceram. Soc. 33[3] (2013) 575-581. https://doi.org/10.1016/j.jeurceramsoc.2012.09.006
  12. D.L. Sun, X.C. Yu, D.B. Sun, and R. Wang, Appl. Mech. Mater. 190-191 (2012) 585-589. https://doi.org/10.4028/www.scientific.net/AMM.190-191.585
  13. T. Hirose, B. Zhao, T. Okabe, and M. Yoshimura, Mater. Sci. 37[16] (2002) 3453-3458. https://doi.org/10.1023/A:1016558922110
  14. A.K. Mishra and S. Ramaprabhu, API Advances 1[3] (2011) 032152. https://doi.org/10.1063/1.3638178
  15. T. Hirose, T. Fujino, T. Fan, H. Endo, T. Okabe, and M. Yoshimura, Carbon 40[5] (2002) 761-765. https://doi.org/10.1016/S0008-6223(01)00197-X
  16. L.B. Zhang, W. Li, J.H. Peng, N. Li, J.Z. Pu, S. M. Zhang, S.H. Guo, Mater. Des. 29[10] (2008) 2066-2071. https://doi.org/10.1016/j.matdes.2008.04.002
  17. M.L. Bauer, C.B. Saltonstall, Z.C. Leseman, T.E. Beechem, P.E. Hopkins, and P.M. Norris, J. Heat Transfer 138[6] (2016) 061302-061311. https://doi.org/10.1115/1.4032610
  18. A. Nagaty, H. El-Sayed Osama, T.I. Samy, and Y.M. Olfat, Holzforschung 36[1] (1982) 29-35. https://doi.org/10.1515/hfsg.1982.36.1.29
  19. V.P. Tolstoy, I. Chernyshova, and V.A. Skryshevsky, in "Handbook of Infrared Spectroscopy of Ultrathin Films" (Wiley Online Library, 2003).
  20. M. Aho, P. Kortelainen, J. Rantanen, and V. Linna, J. Anal. Appl. Pyrolysis 15 (1989) 297-306. https://doi.org/10.1016/0165-2370(89)85042-9
  21. Y. Huang, E. Ma, and G. Zhao, Ind. Crop. Prod. 69 (2015) 447-455. https://doi.org/10.1016/j.indcrop.2015.03.002
  22. C. Morterra, and M.J.D. Low, Mater.Lett. 2[4] (1984) 289-293. https://doi.org/10.1016/0167-577X(84)90134-4
  23. H. Jiang, J. Wang, S. Wu, Z. Yuan, Z. Hu, R. Wu, Q. Liu, Polym. Degrad. Stab. 97[8] (2012) 1527-1533. https://doi.org/10.1016/j.polymdegradstab.2012.04.016
  24. K. Kirtania, J. Tanner, K.B. Kabir, S. Rajendran, and S. Bhattacharya, Bioresour. Technol. 151 (2014) 36-42. https://doi.org/10.1016/j.biortech.2013.10.034
  25. R.S. Badu, and M. Pyo, J. Electrochem. Soc. 161[6] (2014) 1045-1050. https://doi.org/10.1149/2.075406jes
  26. L. Ye, K. Wen, Z. Zhang, F. Yang, Y. Liang, W. Lv, Y. Lin, J. Gu, J.H. Dickerson, and W. He, Adv. Energy Mater. 6[7] (2016) 1502018. https://doi.org/10.1002/aenm.201502018