• Title/Summary/Keyword: Woodceramics

Search Result 34, Processing Time 0.021 seconds

Electrical Properties of Woodceramics Made from Thinned Logs of Cryptomeria japonica D.DON (삼나무 간벌재로 제조된 우드세라믹의 전기적성질)

  • ;Toshihiro Okabe;Takashi Hirose
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • Woodceramics are new porous carbon materials obtained by carbonization of wood or woody materials impregnated with thermosetting resin in a vacuum furnace. This study examined the electrical properties of woodceramics made from thinned logs of Cryptomeria japonica as a use for electric articles. The summarized results were as follows: 1. The volume resistivity of woodceramics decreased with increasing density of woodceramics made from 3 type board. And the volume resistivity of woodceramics made from non- steamed board was somewhat higher than steamed board. 2. The consumption of electric power of woodceramics decreased with increasing density of woodceramics and resin contents made from 3 type board. And the consumption of electric power of woodceramics made from non-steamed board was somewhat higher than steamed board. 3. When the woodceramics were coated by silicon, the consumption of electric power increased about 7%.

  • PDF

Properties of Woodceramics Chip Tile Made from Waste Wood(II) - Effect of Additions and Woodceramics Chip -

  • Oh, Seung-Won;Okabe, Toshihiro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.68-72
    • /
    • 2001
  • In order to effectively use the waste wood, two types of woodceramics chip tile were made from woodceramics chip, gravel, zeolite and additions. The woodceramics chip was made from branch of apple tree (Malus pumila Mill.) Snow melting property, bending strength and compressive strength of woodceramics chip tile were tested according to the mixing rate of woodceramics chip. Snow melting properties of woodceramics chip tile increased after additions treatment but mechanical properties were reduced significantly after additions treatment. The results indicate that the additions are effective for snow melting property but negative effect on mechanical properties.

  • PDF

Effect of Percentage of Resin Impregnation on the Preparation of High Density Woodceramics and the Physical Properties (수지함침율이 고밀도 우드세라믹 제조와 물성에 미치는 영향)

  • Oh, Seung Won;Jeon, Soon Sick
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.39-46
    • /
    • 2008
  • Repeated impregnation and carbonization processes were performed to prepare high-density woodceramics using a sawdust board. The physical properties were investigated to confirm morphological and structural changes of one-time and two-time phenolic resin-treated and carbonized woodceramics. As comparing between one-time and two-time carbonized woodceramics, the weight and the density of the two-time carbonized woodceramics decreased with an increase of the amount of impregnated phenolic resin. In addition, when the amount of impregnated phenolic resin was about 40% in these woodceramics, the two-time carbonized woodceramics showed higher weight (23.8%) and density (30.0%) than the one-time treatment.

Change in Surface Temperature of Woodceramics Manufactured by Sawdust Boards - Effect of the Rate of Resin Impregnation and Burning Temperature - (톱밥보드로 제조된 우드세라믹의 표면온도 변화 - 수지 함침율과 소성온도의 영향 -)

  • 오승원;박금희;변희섭
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2003
  • Using woodceramics made from sawdust board of Larix leptolepis thinning logs, change in surface temperature were investigated, by the rate of resin impregnation and burning temperature. As the surface temperature of silicon rubber heater was going up, that of woodceramics also increase rapidly. Woodceramics made from under the condition of the rate of resin impregnation 70-80% and burning temperature 800-$1000^{\circ}C$, were higher than that of surface temperature. Also, it was found that woodceramics maintained heat for a long time because the descending velocity of their surface temperature was lower than that of the heater.

  • PDF

Properties and Manufacture of High Density Woodceramics by Re-carbonization - Effect of Carbonization Temperature - (재 탄화에 의한 고밀도 우드세라믹 제조 및 성질 - 탄화온도의 영향 -)

  • Oh, Seung Won;Hwang, Jung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2009
  • Repeated impregnation and carbonization processes were performed to prepare high-density woodceramics using a sawdust board. The physical properties were investigated to confirm morphological and structural changes of one-time and two-time phenolic resin-treated and carbonized woodceramics. As comparing between one-time and two-time carbonized woodceramics, the weight and the density of the two-time carbonized woodceramics decreased with an increase of the carbonization temperature. When the carbonization temperature was $600^{\circ}C$, the weight increased by 21.7% and density increased by 20.6% from $0.68g/cm^3$ to $0.82g/cm^3$, respectively, as a maximum value.

Properties of Woodceramics Made from MDF (MDF로 제조된 우드세라믹의 성질)

  • Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.115-120
    • /
    • 2002
  • Woodceramics are new porous carbon materials obtained by burning wood or woody materials impregnated with thermosetting resin in a vacuum furnace. In this paper, the change of dimensions and bending strength of woodceramics which were made from medium density fiberboard have been investigated to examination the possibility of utilization as a woodceramics materials. 1) An increasing rate of dimension in impregnated board increased with increasing resin impregnation rate. And increasing rate of thickness was higher than that of length. 2) When the resin impregnation rate increased, the bending strength of impregnated board had a tendency to increase. 3) The rates of weight loss, length and thickness reduction of woodceramics showed a slight increase with increased burning temperature. 4) The density of woodceramics showed a increase from at 500℃ till at 800℃ with increasing burning temperature but decrease at 1,000℃ 5) When the burning temperature increased, the bending strength of woodceramics had a tendency to increase.

Manufacturing of High Density Woodceramics by Recarbonization Using a Resin Impregnation Board - Change of Density Profile - (수지함침보드의 2차 탄화에 의한 고밀도 우드세라믹 제조 - 밀도경사 변화 -)

  • Oh, Seung-Won;Jeon, Soon-Sick;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.60-67
    • /
    • 2011
  • A repeated impregnation and carbonization process was introduced to product high-density woodceramics using a resin impregnation board. The density profile were measured to further confirm morphologically and structurally occurred changes of one-time and two-time phenolic resin-treated and carbonized woodceramics. After the two-time carbonization of the products, the minimum, average and maximum densities increased more than those of the one-time carbonized woodceramics, and the increase of density profile. Therefore, it is considered that the preparation of uniformed woodceramics with high-density and low density dissipation can be produced by a repeated impregnation and carbonization).

Change of Surface Temperature in Woodceramics Made from MDF(I) -Effect of Density and Burning Temperature- (MDF로 제조된 우드세라믹의 표면온도변화(I) -밀도 및 소성온도의 영향-)

  • 오승원
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The following conclusions were obtained with measuring the surface temperature change of woodceramics which were made of MDF to identify usability of using them as a sub-material for heating system when installing Ondol heating floor. For this purpose, woodceramics were burned at the temperature of $650^{\circ}C$ and $800^{\circ}C$ 1. Surface temperature of woodceramics increased with the increase of density of woodceramics, but no significant difference was detected at the surface temperature when burning temperature was changed. 2. Surface temperature change under given temperature increased as time passed and it showed more increase in temperature at the burning temperature of 80$0^{\circ}C$. 3. Surface temperature change with the change in floor temperature increased u hen floor temperature increased and heating mechanism was fast with increase of measuring temperature.

  • PDF

Effect of Impregnation Ratio and Carbonizing Temperature on Surface Temperature of Woodceramics Made from Thinned Logs of Pinus densiflora S. et. Z. (함침율 및 소성온도가 소나무 간벌재로 제조된 우드세라믹의 표면온도에 미치는 영향)

  • Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • The change in surface temperature of woodceramics, made from thinned logs of Pinus densiflora, were investigated, by the impregnation ratio and carbonizing temperature. As the surface temperature of silicon rubber heater was going up, that of woodceramics also increase rapidly. In case of heaters surface temperature at 70℃, the surface temperature of woodceramics was 53.9℃ when a sample was the impregnation ratio of 80%, while it was 54.2℃ when a sample was at 1,000℃ in carbonizing temperature, showing the highest. Also, it was found that woodceramics maintained heat for a long time because the descending velocity of their surface temperature was lower than that of the heater.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.