• Title/Summary/Keyword: wall-slab connection

Search Result 27, Processing Time 0.028 seconds

Performance Test of Corner Rigid Joint for Modular Structure using Channel and Coupler (채널과 커플러를 사용한 모듈식 구조체 우각부 연결구조의 성능검증 실험)

  • Lee, Jun-Kyoung;Lee, Jong-Soon;Lee, Sung-Hyung;Kim, Hee-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2255-2262
    • /
    • 2015
  • Recent study about near-surface is proposed to overcome non-economic of underground railway and to reduce people's complaints of ground elevated railway. In this report, precast modular structure system replacing temporary facilities is applied to ensure the construction ability and economic feasibility. To verify the performance of connection joint between permanent structural wall and upper slab, loading test is carried out. As a result of the test, wall replacing temporary structure to slab connection is possible to transfer bending moment. By 30% increase of bending resistant performance for connection joint using coupler, coupler connection joint is more advantageous to resist bending moment compared to channel connection.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

Investigation and Analysis of Patents for the Thermal Bridge Breaker in Green Buildings (그린건축을 위한 열교차단 특허기술의 조사 및 분석 연구)

  • Kim, Young-Ho;Kim, Hyung-Joon;Lee, Hee-Young
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, "reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the thermal bridge breaker(or thermal bridge block). Thermal bridges are localized elements that penetrate insulated portions of building envelope that results in heat loss. The purpose of this paper is to describe the technical interactions for patents of a thermal bridge breaker(TTB) used in green building practices, and be subject to investigation to TTB in the leading countries, that is, United State, Europe Union, Japan, and Korea. As a result, there are four TTB categories(roof, wall-slab connection, opening, footing) in house or building. The TTB categories is remarkable technology that is apparatus in slab-wall joints and sealing element of opening frame in walls.

The effectiveness of position of coupled beam with respect to the floor level

  • Yasser Abdal Shafey, Gamal;Lamiaa K., Idriss
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.557-586
    • /
    • 2022
  • In spite of extensive testing of the individual shear wall and the coupling beam (CB), numerical and experimental researches on the seismic behavior of CSW are insufficient. As far as we know, no previous research has investigated the affectations of position of CB regarding to the slab level (SL). So, the investigation aims to enhance an overarching framework to examine the consequence of connection positions between CB and SL. And, three cases have been created. One is composed of the floor slab (FS) at the top of the CB (FSTCB); the second is created with the FS within the panel depth (FSWCB), and the third is employed with the FS at the bottom of the CB (FSLCB). And, FEA is used to demonstrate the consequences of various CB positions with regard to the SL. Furthermore, the main measurements of structure response that have been investigated are deformation, shear, and moment in a coupled beam. Additionally, wall elements are used to simulate CB. In addition, ABAQUS software was used to figure out the strain distribution, shear stress for four stories to further understand the implications of slab position cases on the coupled beam rigidity. Overall, the findings show that the position of the rigid linkage among the CB and the FS can affect the behavior of the structures under seismic loads. For all structural heights (4, 8, 12 stories), the straining actions in FSWCB and FSLCB were less than those in FSTCB. And, the increases in displacement time history response for FSWCB are around 16.1-81.8%, 31.4-34.7%, and 17.5% of FSTCB.

Thermal Crack Control of Wall Elements in LiNAC Structure (LiNAC실 벽체 구조물의 온도 균열 제어)

  • Son, Myong-Sik;Do, Yool-Ho;Na, Woon;Park, Chan-Kyu;Lee, Hoi-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • This paper presents the analytical results on the heat of hydration and induced thermal cracking of the wall elements in LiNAC that is a radioactive shield concrete structure. This wall elements measuring 1.2 m in thickness and 32 m in length tend to exhibit thermal cracking due to heat of hydration and high constraint effects caused by slab element located in the lower part of structure. In this analysis, four different construction stages were considered to find out the most effective concrete casting method in terms of thermal stress. Among the construction methods adopted in this analysis, the method of installation of construction connection measuring 1.2 m at the both side of wall elements was very effective way to control the thermal stress, resulting in increase thermal cracking index of wall elements in LiNAC structure. Finally, the wall elements in LiNAC structure was cast successfully according to the proposed construction method.

  • PDF

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.

An Analytical Study on Primary Anchor Unit for ALC Panel Curtain-wall (ALC 패널 커튼월용 부품 Primary Anchor의 해석적 연구)

  • Yoon, Myung-Ho;Ryu, Chang-Hyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • This study aims at grasping the structural performances of primary anchor assemblage through a nonlinear finite element analysis. Primary anchor unit may be used as one of the connection devices between ALC panel curtain-wall and RC slab or main frame of a building. From the analytical results structural characteristics such as yield strength, initial stiffness and maximum strength are obtained and fully discussed.

Experimental Analysis of Corbel Part Behaviour in Inground LNG Storage Tank (지하식 저장탱크 Corbel부 실험적 거동 분석)

  • Yoon I.S.;Kim J.K.;Kim Y.K.;Kim J.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.56-60
    • /
    • 2006
  • The connection part (corbel) between bottom slab and side wall in inground LNG storage tank has hinge conditions partly fixed by using anchor bars to reduce stress concentration. The corbel deforms in both radial and vertical directions under load conditions of the LNG tank such as LNG temperature, hydraulic pressure, etc. Membrane is an important part from the viewpoint of design because the deformation of the corbel is transformed directly to the membrane and superposed with other deformations. Behavior of the corbel has been investigated through various sensors to measure temperature, load and displacement. And the test data have been compared with finite element results analysis to propose a more reasonable design of LNG storage tank.

  • PDF

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

A Study on the Development of Precast Concrete Modular and its Application Onsite (프리캐스트 콘크리트 모듈러 개발 및 현장적용에 관한 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.27-28
    • /
    • 2023
  • Currently, the Off-Site Construction (OSC) construction method, which emphasizes the minimization of field work, is being emphasized at construction sites due to the lack of construction skilled manpower, extreme weather, and the Severe Disaster Punishment Act. In this study, we developed a stacked PC modular, which is a method of stacking PC modules, and solved the lifting problem by reducing the weight of the unit module, which is emerging as the biggest disadvantage of PC modules, to around 20 tons. For the connection between modules, structural safety was secured through repeated history tests of the wall and slab connection. Walls and slabs satisfied all statutory fire resistance times through fire resistance tests, and residential performance was evaluated to be satisfactory through mock-up demonstration. The developed PC modular has been applied to the construction of commercial houses, detached houses, shopping malls, churches, etc., and has design results for many buildings such as dormitories, detached houses with 4 floors or more, and resorts, so it is expected that an atmosphere of revitalization of construction methods will be created.

  • PDF