• Title/Summary/Keyword: wall facing

Search Result 131, Processing Time 0.023 seconds

Targetless displacement measurement of RSW based on monocular vision and feature matching

  • Yong-Soo Ha;Minh-Vuong Pham;Jeongki Lee;Dae-Ho Yun;Yun-Tae Kim
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.207-218
    • /
    • 2023
  • Real-time monitoring of the behavior of reinforced soil retaining wall (RSW) is required for safety checks. In this study, a targetless displacement measurement technology (TDMT) consisting of an image registration module and a displacement calculation module was proposed to monitor the behavior of RSW, in which facing displacement and settlement typically occur. Laboratory and field experiments were conducted to compare the measuring performance of natural target (NT) with the performance of artificial target (AT). Feature count- and location-based performance metrics and displacement calculation performance were analyzed to determine their correlations. The results of laboratory and field experiments showed that the feature location-based performance metric was more relevant to the displacement calculation performance than the feature count-based performance metric. The mean relative errors of the TDMT were less than 1.69 % and 5.50 % for the laboratory and field experiments, respectively. The proposed TDMT can accurately monitor the behavior of RSW for real-time safety checks.

Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests

  • Zarnani, Saman;El-Emam, Magdi M.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.291-321
    • /
    • 2011
  • The paper describes a simple numerical FLAC model that was developed to simulate the dynamic response of two instrumented reduced-scale model reinforced soil walls constructed on a 1-g shaking table. The models were 1 m high by 1.4 m wide by 2.4 m long and were constructed with a uniform size sand backfill, a polymeric geogrid reinforcement material with appropriately scaled stiffness, and a structural full-height rigid panel facing. The wall toe was constructed to simulate a perfectly hinged toe (i.e. toe allowed to rotate only) in one model and an idealized sliding toe (i.e. toe allowed to rotate and slide horizontally) in the other. Physical and numerical models were subjected to the same stepped amplitude sinusoidal base acceleration record. The material properties of the component materials (e.g. backfill and reinforcement) were determined from independent laboratory testing (reinforcement) and by back-fitting results of a numerical FLAC model for direct shear box testing to the corresponding physical test results. A simple elastic-plastic model with Mohr-Coulomb failure criterion for the sand was judged to give satisfactory agreement with measured wall results. The numerical results are also compared to closed-form solutions for reinforcement loads. In most cases predicted and closed-form solutions fall within the accuracy of measured loads based on ${\pm}1$ standard deviation applied to physical measurements. The paper summarizes important lessons learned and implications to the seismic design and performance of geosynthetic reinforced soil walls.

Local buckling behaviour of steel plate elements supported by a plastic foam material

  • Mahendran, M.;Jeevaharan, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.433-445
    • /
    • 1999
  • Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.

Feedback flow control using the POD method on the backward facing step wall model

  • Cho, Sung-In;Lee, In;Lee, Seung-Jun;Lee, Choong Yun;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.428-434
    • /
    • 2012
  • Missiles suffer from flight instability problems at high angles of attack, since vortex flow over a fuselage cause lateral force to the body. To overcome this problem at a high angle of attack, the development of a real time vortex controller is needed. In this paper, Proper Orthogonal Decomposition (POD) and feedback controllers are developed for real time vortex control. The POD method is one of the most well known techniques for modeling low order models that represent the original full-order model. An adaptive control algorithm is used for real time control.

A low-Reynolds-number 4-equation heat transfer model for turbulent separated and reattaching flows (난류 박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류 열전달 모형의 개발)

  • Rhee Gwang-Hoon;Sung Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.37-42
    • /
    • 1995
  • In the present study, an improved version of 4-equation low-Reynolds-number 4-equation model is proposed. The equations of the temperature variance ($k_{\theta}$) and its dissipation rate(${\varepsilon}_{\theta}$) are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissipation rate(${\varepsilon}$). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

  • PDF

The Weatherability of Non-woven Geotextiles Used in Reinforced Earth Wall (보강토옹벽에 적용되는 지오텍스타일의 내후성)

  • 유중조;김영윤;전한용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.419-424
    • /
    • 2001
  • In the KOESWall system, non-woven geotextiles are placed at the face of reinforced earth until the facing blocks are built up. And when this system is used as temporary structure, geotextiles facings are exposed to sunlight during service lifetime. During these periods, degradation of nonwoven geotextiles are occurred by UV light. So the UV-resistance of nonwoven geotextiles must be assessed correctly, in considering of the site conditions. In this study, laboratory test and the field test have been performed to evaluate the UV resistance of non-woven geotextiles used in KOESWall system and the results are expressed in terms of tensile characteristics & SEM photographs.

  • PDF

The Restorational Study of Windows and Doors of Chukcho-Dang in Duksu Palace (덕수궁(德壽宮) 즉조당(卽祚堂) 창호(窓戶)의 복원적 고찰)

  • Chang, Soon-Yong
    • Journal of architectural history
    • /
    • v.1 no.1 s.1
    • /
    • pp.18-32
    • /
    • 1992
  • The Palaces of Chosen dynasty in Seoul had lost its original features. The external appearance of the buildings that remains in palace nowadays, have got former conditions, but its enteriors are reconstructed or removed So we have a little knowledge of interiors of palace buildings, expecially of the door and window system. To clear up ambiguity of what kinds of door are selected, and sorts of using methods are prevailed, we must persuit from the latest building to the older building, and compare with documents. For that purpose the Chukchodang of Toksu palace is selected, which reconstructed in 1904, and compared with the document published in 1906. The consequence of investigation is that the palace buildings were adopted double or triple window system, and the main room have buffer zones, such as corridors or small rooms. And the main rooms were facing with wall paper, so metal fittings are hidden and wooden surfaces are hardly expose for the purpose of amenity.

  • PDF

Static Performance of Reinforced Soil Segmental Retaining Wall (블록식 보강토 옹벽의 정적성능 평가)

  • Koh Tae-Hoon;Lee Sung-Hyuck;Lee Jin-Wook;Hwang Seon-Keun;Park Sung-Hyun;Lee Seung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.46-52
    • /
    • 2003
  • In this study, the full scale testing method of the geogrid-reiuorced soil Segmental Retaining Walll(SRW) under the simulated train loading were proposed in order to evaluate the applicability of reinforced soil SRW in railway embankment. The train loading was simulated by the design static wheel load and the impact coefficient due to the train passing velocity. This test was focused on the static performance of reinforced soil SRW in terms of the following measuring systems ; the horizontal earth pressure displacement acting on the facing block and the tensile strain along the geogrid. The data gathered from this full scale testing was compared with numerical analysis results by FLAC.

  • PDF

Calculation of the incompressible Navier-stokes equations in generalized nonorthogonal body fitted coordinate system (일반 비직교 표면좌표계에서의 비압축성 Navier-Stokes방정식의 수치해석)

  • Gang, Dong-Jin;Bae, Sang-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1015-1027
    • /
    • 1996
  • In this paper, a numerical procedure for the calculation of the incompressible Navier-Stokes equations in a generalized nonorthogonal body fitted coordinate system is proposed and is validated through three test problems. Present numerical procedure derives the pressure equation by using the pressure substitution method on the regular grid system, and discretized momentum equations are based on the covariant velocity components. Cavity flow, backward facing step flow, and two dimensional channel flow with a sinusoidal wavy wall are chosen as three test problems. Numerical solutions obtained by present procedure shows a good agreement with previous numerical and/or experimental results. Convergence rate is also satisfactory.

Buoyancy-Affected Separated Laminar Flow over a Vertically Located, Two-Dimensional Backward-Facing Step (수직으로 놓인 후향계단위를 흐르는 유체유동에 미치는 부력의 영향에 관한 연구)

  • 백병준;박복춘;김진택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1253-1261
    • /
    • 1993
  • Numerical analysis and measurements of the velocity and temperature distributions in buoyancy assisting laminar mixed convection flow over a vertically located, two-dimensional backward-facing step are reported. Laser-Doppler Velocimeter and Constant Temperature Anemometer operated in constant current were used to measure simultaneously the velocity and temperature distributions in the recirculation region downstream of the step. The reattachment length was measured by using flow visualization technique for different inlet velocities, wall temperatures and step heights. While the reattachment length $X_r$ increases as the inlet velocity or step height increase, it decreases as the buoyancy force increases, causing the size of the recirculation region to decrease. For the experimental range of $Gr_s$/$Re_{s}^{2}$$\times$$10^3$<17, a correlation equation for the reattachment length can be given by $X_{r}=1.05(2.13+0.021 Re_{s})exp$ $(-33.7_s^{-0.186}/Gr_{s}/Re_{s}^2).$ The Nusselt number is found to increase and the location of its maximum value moves closer to the step as the buoyancy force increases. The location of the maximum Nusselt number occurs downstream of the reattachment point, and distance between the reattachment point and the location of the maximum Nusselt mumber increases as the buoyancy force increases. Computational prediction agrees favorably well with measured results.