• Title/Summary/Keyword: wall displacement

Search Result 791, Processing Time 0.024 seconds

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Axial Stress Evaluation of Bundle Nails in Smart Construction (스마트 건설기반 번들네일의 축응력 평가)

  • Donghyuk Lee;Jaekoo Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.13-17
    • /
    • 2024
  • The general soil nailing method, which is currently used domestically and internationally to stabilize the slopes of sandy slopes, is to form a kind of gravity-type retaining wall by drilling the ground and grouting it with a single steel bar. This method can reduce construction costs, ease of construction, relative strength and displacement, and is highly efficient. The difference between grouting and rebar adhesion to the yield pullout force and the difference between the amount of deformation in relation to the same pullout resistance was analyzed through field tests to identify engineering excellence, and in terms of construction cost, the reduction effect was evaluated by analyzing the difference in the number of drillings and the impact on the overall construction cost, such as material cost, when the same strength constant is applied to the ground with the same resistance.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF

Quantitative Assessment of Myocardial Tissue Velocity in Normal Children with Doppler Tissue Imaging : Reference Values, Growth and Heart Rate Related Change (소아에서 도플러 조직영상을 이용한 최대 심근 속도의 계측 : 정상 추정치 및 성장 및 심박동수에 따른 변화)

  • Kim, Se Young;Hyun, Myung Chul;Lee, Sang Bum
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.8
    • /
    • pp.846-856
    • /
    • 2005
  • Purpose : To measure the peak myocardial tissue velocities and patterns of longitudinal motion of atrioventricular(AV) annuli and assess body weight and heart rates-related changes in normal children. Methods : Using pulsed wave Tissue Doppler Imaging(TDI), we measured peak systolic, early and late diastolic myocardial velocities in 72 normal children at six different sites in apical-4 chamber (A4C) view and at four different sites in apical-2 chamber(A2C) view and compared those values with each other, also observing effects with body weights and heart rates. Longitudinal motions of the AV annuli were measured at three different sites in A4C. Results : There were no significant differences of the TDI parameters between gender, ECHO-machines and among the three Doctors performing TDI. Peak myocardial velocities were significantly higher at the base of the heart than in the mid-ventricular region and in the right lateral ventricular wall than in the left lateral ventricular wall or IVS. The TDI parameters showed no significant correlation with fractional shortening(%). Peak systolic and early diastolic myocardial velocities had no correlation with heart rates, but peak late diastolic velocities and A/E ratio correlated positively with heart rates. Correlations between the TDI parameters and body weight were inconsistent. Absolute longitudinal displacement and % displacement were not differ between gender and not correlated with the TDI parameters. Conclusion : We measured the peak myocardial velocities with TDI and the longitudinal motion of the AV annuli using M-mode echocardiography in normal children. With more large scale evaluation, we may establish reference values in normal children and broaden clinical applicabilities in congenital and acquired heart diseases.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

A Study on Comparison of Outdoor Wind Pressure Performance According to Outdoor Exposure and Acceleration Deterioration Methods of Structural Sealants Applied to Curtain Wall (커튼월에 적용된 구조용 실링재의 옥외폭로와 실내복합열화 처리방법에 따른 내풍압성능 비교연구)

  • Jang, Pil Sung;Hong, Soon Gu;Kim, Sung Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.279-287
    • /
    • 2018
  • Sealants are an important element of modern architecture and serve as a building protection against weathering by providing barriers against ingress of moisture, air, and other materials. Exposure to a variety of environments often reduces lifespan due to changes in physical, chemical and mechanical characteristics, and UV, humidity, and temperature expansion are important issues that are directly related to durability. In this study, a combined deterioration test chamber was developed to simulate the environment of the open air as an instrument for verifying the durability of structural sealing materials indoors. In order to replicate special weather conditions, such as yellow dust, acid rain, and contamination by microorganisms, it was deemed impossible to replicate the outdoor environment by 100 %, and the results of the results of the results of the external exposure test of the structural sealant and the combined deterioration testing device. As a result of the displacement test of the outdoor exposure test, it was determined that the sealant was breaking apart and that it would be smooth, and the displacement would be up to three times greater than the initial material value of 1 year. The displacement test results of the combined deterioration test device show the tendency to deteriorate, decreasing the elasticity and tensile characteristics. In the case of denatured silicon, the current 400 cycles have been completed to confirm 12 months of degradation of the external exposure. The deformation of the test specimen cannot be verified with the naked eye, so it is considered that the conditions of the specimen are more stable than the silicon sealant. As a result of the outdoor exposure test, if the combined deterioration test device is structured and proposed in the relevant guidance or specification, the anticipated lifespan of 12 months in the actual use environment can be verified indoors and below 3 months later, economically.

The Crystallographic and Magnetic Properties of $Fe_{1-x}Co_x$System ($Fe_{1-x}Co_x$계의 결정구조와 자기적인 성질)

  • 김정기;한경훈;서정철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.4
    • /
    • pp.190-195
    • /
    • 1999
  • The crystallographic and magnetic properties of the system of $Fe_{1-x}Co_x$(x=0.2 and 0.4) prepared by microwave arc-melting with the maximum power of 3.5 kW and a iron-foil with thickness of 25 ${\mu}{\textrm}{m}$ have been studied by the methods of X-ray diffraction and the measurement of the magnetic hysteresis using the vibrating sample magnetometer at room temperature. The samples were prepared in three different ways: First, pellet form pressed under the pressure of 9,000 N/$\textrm{cm}^2$. Second, the sheet cold rolled. Third, thin sheet treated with the temperature of 90$0^{\circ}C$. The X-ray diffraction pattern of the sample prepared by the first method shows that the crystal structure of the sample is bcc as same as that of Fe with a good uniformity. The iron-foil has the coercivity of 43 Oe and the initial slope of magnetization of 0.328 emu/gOe. The coervicity and magnetization of the sample prepared by the second method increased as the Co content increased. But the initial slop of the magnetization decreased as the Co content increased. This means that the displacement of domain wall is suppressed by the increases of coercivity as the Co content increased. The saturation magnetization of the samples made by the third method increased. On the other hand, the coercivity of these samples decreased. The increase of saturation magnetization of the samples seems to be related to the changes in X-ray intensity after heat treatment. Also some magnetic parameters of the samples were calculated by using a simple model and compared with other values.

  • PDF

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Early Surgical Stabilization of Ribs for Severe Multiple Rib Fractures (중증 다발성 늑골골절에 대한 조기 수술적 늑골고정술)

  • Hwang, Jung-Joo;Kim, Young-Jin;Ryu, Han-Young;Cho, Hyun-Min
    • Journal of Trauma and Injury
    • /
    • v.24 no.1
    • /
    • pp.12-17
    • /
    • 2011
  • Purpose: A rib fracture secondary to blunt thoracic trauma continues to be an important injury with significant complications. Unfortunately, there are no definite treatment guidelines for severe multiple rib fractures. The purpose of this study was to evaluate the result of early operative stabilization and to find the risk factors of surgical fixation in patients with bilateral multiple rib fractures or flail segments. Methods: From December 2005 to December 2008, the medical records of all patients who underwent operative stabilization of ribs for severe multiple rib fractures were reviewed. We investigated patients' demographics, preoperative comorbidities, underlying lung disease, chest trauma, other associated injuries, number of surgical rib fixation, combined operations, perioperative ventilator support, and postoperative complications to find the factors affecting the mortality after surgical treatment. Results: The mean age of the 96 patients who underwent surgical stabilization for bilateral multiple rib fractures or flail segments was 56.7 years (range: 22 to 82 years), and the male-to-female ratio was 3.6:1. Among the 96 patients, 16 patients (16.7%) underwent reoperation under general or epidural anesthesia due to remaining fracture with severe displacement. The surgical mortality of severe multiple rib fractures was 8.3% (8/96), 7 of those 8 patients (87.5%) dying from acute respiratory distress syndrome or sepsis. And the other one patient expired from acute myocardial infarction. The risk factors affecting mortality were liver cirrhosis, chronic obstructive pulmonary disease, concomitant severe head or abdominal injuries, perioperative ventilator care, postoperative bleeding or pneumonia, and tracheostomy. However, age, number of fractured ribs, lung parenchymal injury, pulmonary contusion and combined operations were not significantly related to mortality. Conclusion: In the present study, surgical fixation of ribs could be carried out as a first-line therapeutic option for bilateral rib fractures or flail segments without significant complications if the risk factors associated with mortality were carefully considered. Furthermore, with a view of restoring pulmonary function, as well as chest wall configuration, early operative stabilization of the ribs is more helpful than conventional treatment for patients with severe multiple rib fractures.