Quantitative Assessment of Myocardial Tissue Velocity in Normal Children with Doppler Tissue Imaging : Reference Values, Growth and Heart Rate Related Change

소아에서 도플러 조직영상을 이용한 최대 심근 속도의 계측 : 정상 추정치 및 성장 및 심박동수에 따른 변화

  • Kim, Se Young (Department of Pediatrics, College of Medicine, Daegu Catholic University) ;
  • Hyun, Myung Chul (Department of Pediatrics, College of Medicine, Kyungpook National University) ;
  • Lee, Sang Bum (Department of Pediatrics, College of Medicine, Kyungpook National University)
  • 김세영 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 현명철 (경북대학교 의과대학 소아과학교실) ;
  • 이상범 (경북대학교 의과대학 소아과학교실)
  • Received : 2005.03.09
  • Accepted : 2005.05.06
  • Published : 2005.08.15

Abstract

Purpose : To measure the peak myocardial tissue velocities and patterns of longitudinal motion of atrioventricular(AV) annuli and assess body weight and heart rates-related changes in normal children. Methods : Using pulsed wave Tissue Doppler Imaging(TDI), we measured peak systolic, early and late diastolic myocardial velocities in 72 normal children at six different sites in apical-4 chamber (A4C) view and at four different sites in apical-2 chamber(A2C) view and compared those values with each other, also observing effects with body weights and heart rates. Longitudinal motions of the AV annuli were measured at three different sites in A4C. Results : There were no significant differences of the TDI parameters between gender, ECHO-machines and among the three Doctors performing TDI. Peak myocardial velocities were significantly higher at the base of the heart than in the mid-ventricular region and in the right lateral ventricular wall than in the left lateral ventricular wall or IVS. The TDI parameters showed no significant correlation with fractional shortening(%). Peak systolic and early diastolic myocardial velocities had no correlation with heart rates, but peak late diastolic velocities and A/E ratio correlated positively with heart rates. Correlations between the TDI parameters and body weight were inconsistent. Absolute longitudinal displacement and % displacement were not differ between gender and not correlated with the TDI parameters. Conclusion : We measured the peak myocardial velocities with TDI and the longitudinal motion of the AV annuli using M-mode echocardiography in normal children. With more large scale evaluation, we may establish reference values in normal children and broaden clinical applicabilities in congenital and acquired heart diseases.

목 적 : 최근 심장 기능 평가에 많이 사용되는 TDI 지표들에 대해서 우리나라의 정상 소아에 대한 연구가 아직 미흡한 실정이다. 이에 정상 소아 72례(남아 : 42례, 여아 : 30례)를 대상으로 한 TDI 및 31례를 대상으로 한 M-형 심초음파 검사를 이용한 지표들에 대한 계측치를 확인하고, 이러한 계측치에 여러 변수들(몸무게, 심박동수, 측정한 위치 등)이 미치는 영향에 대해서 관찰하였다. 방 법 : 선천성 심질환이나 심장에 영향을 미칠 수 있는 질환이 없는 건강한 소아를 대상으로 하여, 심첨 4방도, 심첨 2방도의 여러 부위에서 PW-TDI를 이용하여 최대 심근 속도를 측정하고, 측정 부위에 따른 계측치의 차이, 나이, 몸무게 및 심박동수 등이 이러한 측정치들에 미치는 영향에 대해서 연구하였다. 또한 심첨 4방도에서 각각의 판막륜 방향으로 M-형 심초음파 검사를 시행하여 나이, 몸무게 및 심박동수와 연관 관계가 있는지 알아보았다. 또한 M-형 심초음파 검사에서 측정한 값들과 TDI 계측치들과의 관계에 대해서도 연구하였다. 결 과 : TDI로 측정한 여러 변수들은 남녀, 심초음파 기기간 및 검사를 시행한 의사간에는 의미있는 차이를 보이지 않았다. 판막륜과 판막륜 및 심첨의 중간 부위에서 측정한 값간에는 판막륜에서 측정한 값들이 의미있게 높게 측정되었으며, 우심실 측벽의 측정치가 심실 중격 및 좌심실 부위에서 측정한 값보다 높았다. 심근 단축률과 TDI 측정치간에는 상관 관계를 보이지 않았다. 심박동수와의 상관 관계를 보면 S-및 E-파형의 경우 심박동수와 상관 관계가 없었으나, A-파형 및 A/E 비는 심박동수와 양의 상관 관계를 보였다. 몸무게와의 상관 관계도 측정한 부위 및 계측치 들마다 일정한 상관 관계를 보여 주지는 못하였다. M-형 심초음파 검사로 측정한 판막륜의 움직임은 성별간에 유의한 차이를 보이지 않았으며, ALD는 몸무게와 양의 상관 관계를, 이동률은 음의 상관 관계를 보이는 경향이 있었다. 그러나 이동률과 TDI 계측치들 간에는 유의한 상관 관계를 발견할 수 없었다. 결 론 : 정상 소아들에서 TDI를 이용하여 최대 심근 속도를 측정하고, 또한 M-형 심초음파 검사를 이용한 판막륜의 움직임을 관찰해 보았다. 이러한 계측치들을 토대로 좀더 많은 례를 통한 한국 소아들의 TDI 및 M-형 심초음파 검사를 이용한 판막륜의 움직임에 대한 정상치를 확립하여야 하겠으며, 선천성 및 후천성 심질환을 가진 환아들에서의 임상 적용을 기대해 본다.

Keywords

References

  1. Frommelt PC, Ballweg JA, Whitstone BN, Frommelt MA. Usefulness of Doppler tissue imaging analysis of tricuspid annular motion for determination of right ventricular function in normal infants and children. Am J Cardiol 2002;89: 610-3 https://doi.org/10.1016/S0002-9149(01)02308-6
  2. Isaaz K, Thompson A, Ethevenot G, Cloez JL, Brembilla B, Pernot C. Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am J Cardiol 1989;64:66-75 https://doi.org/10.1016/0002-9149(89)90655-3
  3. McDicken WN, Sutherland GR, Moran CM, Gordon LN. Colour Doppler velocity imaging of the myocardium. Ultrasound Med Biol 1992;18:651-4
  4. Miyatake K, Yamagishi M, Tanaka N, Uematsu M, Yamazaki N, Mine Y, et al. New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging : in vitro and in vivo studies. J Am Coll Cardiol 1995;25:717-24 https://doi.org/10.1016/0735-1097(94)00421-L
  5. Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, et al. Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 1994;7:441-58
  6. Donovan CL, Armstrong WF, Bach DS. Quantitative Doppler tissue imaging of the left ventricular myocardium : validation in normal subjects. Am Heart J 1995;130:100-4 https://doi.org/10.1016/0002-8703(95)90242-2
  7. Palka P, Lange A, Fleming AD, Sutherland GR, Fenn LN, McDicken WN. Doppler tissue imaging: myocardial wall motion velocities in normal subjects. J Am Soc Echocardiogr 1995;8:659-68 https://doi.org/10.1016/S0894-7317(05)80380-3
  8. Galiuto L, Ignone G, DeMaria AN. Contraction and relaxation velocities of the normal left ventricle using pulsedwave tissue Doppler echocardiography. Am J Cardiol 1998; 81:609-14 https://doi.org/10.1016/S0002-9149(97)00990-9
  9. Ohte N, Narita H, Hashimoto T, Akita S, Kurokawa K, Fujinami T. Evaluation of left ventricular early diastolic performance by color tissue Doppler imaging of the mitral annulus. Am J Cardiol 1998;82:1414-7 https://doi.org/10.1016/S0002-9149(98)00651-1
  10. Rodriguez L, Garcia M, Ares M, Griffin BP, Nakatani S, Thomas JD. Assessment of mitral annular dynamics during diastole by Doppler tissue imaging : comparison with mitral Doppler inflow in subjects without heart disease and in patients with left ventricular hypertrophy. Am Heart J 1996;131:982-7 https://doi.org/10.1016/S0002-8703(96)90183-0
  11. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, Oh BH, et al. Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 1997;30:474-80 https://doi.org/10.1016/S0735-1097(97)88335-0
  12. Pai RG, Gill KS. Amplitudes, durations, and timings of apically directed left ventricular myocardial velocities : II. Systolic and diastolic asynchrony in patients with left ventricular hypertrophy. J Am Soc Echocardiogr 1998;11:112-8 https://doi.org/10.1016/S0894-7317(98)70068-9
  13. Bruch C, Marin D, Kuntz S, Schmermund A, Bartel T, Schaar J, et al. Analysis of mitral annulus excursion with tissue Doppler echocardiography(tissue Doppler echocardiography= TDE). Noninvasive assessment of left ventricular, diastolic dysfunction. Z Kardiol 1999;88:353-62 https://doi.org/10.1007/s003920050297
  14. Farias CA, Rodriguez L, Garcia MJ, Sun JP, Klein AL, Thomas JD. Assessment of diastolic function by tissue Doppler echocardiography : comparison with standard transmitral and pulmonary venous flow. J Am Soc Echocardiogr 1999;12:609-17 https://doi.org/10.1053/je.1999.v12.a99249
  15. Oki T, Tabata T, Yamada H, Wakatsuki T, Shinohara H, Nishikado A, et al. Clinical application of pulsed Doppler tissue imaging for assessing abnormal left ventricular relaxation. Am J Cardiol 1997;79:921-8 https://doi.org/10.1016/S0002-9149(97)00015-5
  16. Gulati VK, Katz WE, Follansbee WP, Gorcsan J 3rd. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol 1996;77:979-84 https://doi.org/10.1016/S0002-9149(96)00033-1
  17. Riggs TW, Rodriguez R, Snider AR, Batton D. Doppler echocardiographic evaluation of right and left ventricular diastolic function in normal neonates. J Am Coll Cardiol 1989;13:700-5 https://doi.org/10.1016/0735-1097(89)90614-1
  18. Riggs TW, Snider AR. Respiratory influence on right and left ventricular diastolic function in normal children. Am J Cardiol 1989;63:858-61 https://doi.org/10.1016/0002-9149(89)90057-X
  19. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Klein AL, Stewart WJ, et al. Myocardial wall velocity assessment by pulsed Doppler tissue imaging : characteristic findings in normal subjects. Am Heart J 1996;132:648-56 https://doi.org/10.1016/S0002-8703(96)90251-3
  20. Rychik J, Tian ZY. Quantitative assessment of myocardial tissue velocities in normal children with Doppler tissue imaging. Am J Cardiol 1996;77:1254-7 https://doi.org/10.1016/S0002-9149(96)00178-6
  21. Kapusta L, Thijssen JM, Cuypers MH, Peer PG, Daniels O. Assessment of myocardial velocities in healthy children using tissue Doppler imaging. Ultrasound Med Biol 2000;26: 229-37 https://doi.org/10.1016/S0301-5629(99)00102-7
  22. Swaminathan S, Ferrer PL, Wolff GS, Gomez-Marin O, Rusconi PG. Usefulness of tissue Doppler echocardiography for evaluating ventricular function in children without heart disease. Am J Cardiol 2003;91:570-4 https://doi.org/10.1016/S0002-9149(02)03308-8
  23. Mori K, Hayabuchi Y, Kuroda Y, Nii M, Manabe T. Left ventricular wall motion velocities in healthy children measured by pulsed wave Doppler tissue echocardiography : normal values and relation to age and heart rate. J Am Soc Echocardiogr 2000;13:1002-11 https://doi.org/10.1067/mje.2000.108131
  24. Sohn DW, Kim YJ, Kim HC, Chun HG, Park YB, Choi YS. Evaluation of left ventricular diastolic function when mitral E and A waves are completely fused : role of assessing mitral annulus velocity. J Am Soc Echocardiogr 1999;12:203-8 https://doi.org/10.1016/S0894-7317(99)70136-7
  25. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left ventricular fibre architecture in man. Br Heart J 1981;45:248-63 https://doi.org/10.1136/hrt.45.3.248
  26. Emilsson K, Alam M, Wandt B. The relation between mitral annulus motion and ejection fraction : a nonlinear function. J Am Soc Echocardiogr 2000;13:896-901 https://doi.org/10.1067/mje.2000.107253
  27. Hiarada K, Orino T, Yasuoka K, Tamura M, Takada G. Tissue doppler imaging of left and right ventricles in normal children. Tohoku J Exp Med 2000;191:21-9 https://doi.org/10.1620/tjem.191.21
  28. Yasuoka K, Harada K, Orino T, Takada G. Right ventricular diastolic filling assessed by conventional doppler and tissue Doppler imaging in normal children. Tohoku J Exp Med 1999;189:283-94 https://doi.org/10.1620/tjem.189.283
  29. Arce OX, Knudson OA, Ellison MC, Baselga P, Ivy DD, Degroff C, et al. Longitudinal motion of the atrioventricular annuli in children : reference values, growth related changes, and effects of right ventricular volume and pressure overload. J Am Soc Echocardiogr 2002;15:906-16 https://doi.org/10.1067/mje.2002.121436
  30. Kukulski T, Hubbert L, Arnold M, Wranne B, Hatle L, Sutherland GR. Normal regional right ventricular function and its change with age : a Doppler myocardial imaging study. J Am Soc Echocardiogr 2000;13:194-204
  31. Zoghbi WA, Habib GB, Quinones MA. Doppler assessment of right ventricular filling in a normal population. Comparison with left ventricular filling dynamics. Circulation 1990;82:1316-24 https://doi.org/10.1161/01.CIR.82.4.1316
  32. Iwase M, Nagata K, Izawa H, Yokota M, Kamihara S, Inagaki H, et al. Age-related changes in left and right ventricular filling velocity profiles and their relationship in normal subjects. Am Heart J 1993;126:419-26 https://doi.org/10.1016/0002-8703(93)91061-I
  33. Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 1984;107:526-31 https://doi.org/10.1016/0002-8703(84)90095-4
  34. Hammarstrom E, Wranne B, Pinto FJ, Puryear J, Popp RL. Tricuspid annular motion. J Am Soc Echocardiogr 1991;4: 131-9