• Title/Summary/Keyword: walking time

Search Result 973, Processing Time 0.031 seconds

In According to Walking Time The Character of the Ground Reaction Force in Elderly OA(Osteo-Arthritis) Female Patient (노인 여성 관절염 환자의 보행시간에 따른 지면반력의 특징)

  • Lee, Jung-Ho;Seo, Jung-Suk;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.75-82
    • /
    • 2007
  • The purpose of this study was to analyze and compare the effect of gait time on the gait patterns in elderly female OA and non-OA patients. The intensity of the subjects joint pain was surveyed by using WOMAC. Twelve subjects participated in this study. Measurements were taken for every the 10 minutes for 30 minutes after walking by a force plate. The following variables were recorded; double stance support time, Fx, Fy, Fx_time, Fz and so on. From the investigation of these variables the following was observed and concluded. The Fz values for the OA group was 1.01BW at the start and after 30 minutes was 1.04BW on the other hand the non-OA group's Fz1 was 1.08BW and 1.10BW. There was no significant difference calculated between the two groups and at the start and end of the experiment about all the variables. Therefore, it is concluded that there was no negative effect caused by walking for the 30 minutes and that it was an effective way of strengthen both respiratory and muscle function.

Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot (이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현)

  • Lim, Dong-Cheol;Kuc, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

The Effects of Hiking Poles and Steady Walking Time on Up-hill Walking (폴 사용 여부와 걷는 지속시간 경과가 오르막 걷기에 미치는 영향)

  • Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.227-235
    • /
    • 2009
  • The purpose of this study was to analyze differences of 45minutes up-hill walking depending on hiking poles and steady walking time. Seven healthy men volunteered for this experiment. Each of them performed up-hill walking with hiking poles and without hiking poles at speed of 3.5km/h during 45minutes on a treadmill. The treadmill was set 25% up-hill inclination. The lower extremity 4 muscles activity including rectus femoris, tibialis anterior, gastrocnemius, biceps femoris was recorded and assessed by using EMG. And Heart rate(HR) and Rating of perceived exertion(RPE) were recorded and analyzed by 15minutes interval. The statistical analysis was two-way ANOVA with repeated measures to compare effects of hiking poles and steady walking time. The level of statistical significance for all tests was P<.05. The results of this study were following : Integrated EMG about four individual muscles doesn't have statistical significancy. However, the sum of IEMG of the four muscles was decreased some with poles than without poles(p<.0l) and IEMG about four muscles was rut different on steady walking time. Second, HR was increased significantly as time up(P<.01). RPE was decreased some with poles than without poles(P<.05) and RPE was increased significantly as time up(P<.01).

A Kinetic Analysis of the Lower Extremity on the Normal and Abnormal Specificity of Walking on Stair for Twenties (이십대 청년의 정상 및 비정상 계단보행특성에 따른 하지의 운동역학적 분석)

  • Kim, Young-Ji;Lee, Young-Shin;Kim, Chang-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.391-396
    • /
    • 2011
  • Gait is walking attitude and indicating state. The body's gait is a good mix in the center of body mechanics and exercises to wake up gently at the same time switch is a pass which is complicated at legs various joints. The shifting action what swing phase and stance phase rhythmic movement of body. One from piece moves with different dot. Especially plain walking and stair walking as a vehicle has been used frequently. Characteristics of the stair walking while the balanced the horizontal and vertical movement. Stair walking often takes place in everyday. It requires large range more than walking at plain in the moment and joint range of gait motion. And consistently applied to joints and various types of loads at legs joint may involve joint disorders. In this study, spastic cerebral palsy existing artificial limbs for disabled people when developing calibration equinus deformity patients induce muscle pain when walking on stairs independently, to reduce the research. Comparing the characteristics of the walking up the stairs for analysis patellofemoral joint pain as a result it is to provide engineering data.

Modeling of Walking Loads for Floor Vibration Analysis (바닥판 진동해석을 위한 보행하중의 모형화)

  • 김기철;최균호;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.173-188
    • /
    • 2002
  • In General, the measured loads and load-time function suggested by Bachmann iota walking are used for vibration analysis of structures subjected to footstep loads. It is not easy to measure walking loads because they we influenced by various parameters. Therefore, it is needed to model the walking loads that can be applied to structure analysis. Parameter study is used for the walking loads having various walking frequency for vibration analysis of structures under walking loads. In this study, walking loads were measured directly by using a force plate within two load cells, and the parameters of the walking loads were analyzed. The measured walking loads are decomposed into harmonic loads by using the Fouler series. Functional relationship between the walking frequency and the Fourier coefficients can be derived from the coefficients of harmonic loads obtained by the decomposition process, and the walking loads were formulated. It is possible to apply the venerated walking loads easily or conveniently by the proposed equation to the analysis of a structure subjected to walking loads.

Analysis of Walking Speed According to Shoe type and Behavioral tasks (신발 유형과 행동 과제에 따른 보행 속도 분석)

  • Kim, Jae-Won;Jo, Yeon-Ha;Lee, Sun-Yeop;Lee, Mu-Ryeol;Kim, So-Jeong;Kim, Jin-A
    • Journal of Korean Clinical Health Science
    • /
    • v.5 no.4
    • /
    • pp.1015-1020
    • /
    • 2017
  • Purpose. Walking depends on the speed and type of shoe to be worn, and the degree of impact varies with the muscle used. In addition, the speed can be changed by moving objects and using objects when walking. This study analyzed the change of walking speed by applying various factors influencing walking. Methods. A total of 60 patients who had not undergone musculoskeletal diseases during the last 1 year were included. Shoe type was divided into slippers and shoe heels. Behavioral types were divided into bagging, books, and cell phone use. The walking speed was measured by the general walking, the middle walking, and the fast walking. The time was measured using a 10M linear distance test. The collected data were analyzed with SPSS program for independent samples t-test, one-way ANOVA. Results. There was a statistically significant difference according to the type of shoes when walking. Walking speed was slow in shoe heel. In addition, There was statistically significant difference according to type of behavior task at walking. Walking speed was slow in task type using mobile phone during walking. Conclusions. The walking speed were appeared difference in each type of shoe heel, using mobile phone.

Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics (구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법)

  • Hong, Seok-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2017
  • This paper proposes a transformation method of the zero moment point (ZMP) and the center of mass (CoM) from one walking pattern to other patterns by considering the structure of a robot or walking situations in real time. In general, a humanoid robot has own structure characteristics like height and mass. The structure characteristics make the given CoM/ZMP walking pattern of one human or one humanoid robot to be difficult to apply to other robot directly. For this purpose, we analyze the characteristics of walking patterns according to the step length, duration of walking support phase and the CoM height by using the cart-table model as the simple humanoid robot model. A transformation equation is derived from the analyzation and it is verified with simulation.

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

The Relationship between Physical Characteristics and Walking Ability in Elderly: A Cross-Sectional Study (노인들의 보행 능력과 신체적인 특성 간의 상관관계: 단면 연구)

  • Park, Mi-Hee;Park, Hyun-Ju;Oh, Duck-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2664-2671
    • /
    • 2012
  • This study aimed to investigate the relationship between physical characteristics and walking ability in the elderly population. Subjects were 77 elderly (38 men and 39 women) who are capable of walking independently with and without walking aids. Correlation and stepwise multiple linear regression analyses were used to analyze the relationship between physical characteristics (age, gender, height, weight, body mass index, muscle mass, waist/hip ratio, heart rate, vital capacity, flexibility, maximum oxygen consumption, one-leg standing time, and strength of knee flexor and extensor) and walking velocity of subjects. Age, height, vital capacity, one-leg standing time, and strength of knee flexor and extensor showed significant correlations with walking velocity of subjects (p<.05). Further, the strength of knee flexor explained 27% of the variance, and up to 32% of the walking velocity could be explained when the strength of knee extensor were added to the model. The findings suggest that walking velocity of elderly depends on the strength of lower limb's strength and a variety of physical characteristics.

The effects of a task-oriented circuit training program of lower limb on walking ability after stroke (순환식 하지 훈련이 뇌졸중 환자의 보행능력에 미치는 영향)

  • Kong, Sun-Woong;Kim, Ji-Sun;Moon, Seong-Jang;Jin, Won-Hwa;Yun, Tae-Won;Han, Mi-Ran;Cho, Young-Hwan
    • PNF and Movement
    • /
    • v.8 no.2
    • /
    • pp.47-55
    • /
    • 2010
  • Purpose : The purpose of present study was to determine effects of a task-oriented circuit training(TOCT) for lower limb on walking ability after stroke. Methods : Twenty one chronic stroke patients participated. Participants were randomly divided into either TOCT group or control group(11 experimental, 10 control). All of participants were in-patients at local rehabilitation centre and had been receiving a traditional rehabilitation program, five days a week. TOCT group have additionally undergone for four weeks, three days a week, the TOCT program but control group was not received any additional program except the traditional rehabilitation program. The 10 m walking test (10MWT), the 2 min walking test (2MWT), the step test (ST) and the figure-8 walking test (F8WT) to measure a walking ability were carried out twice before and after training. Results : After participation in the program, subjects of TOCT demonstrated a significant improvement in the scores of the 10MWT, 2MWT, the ST, the F8WT. The control group had no change on the any tests. After the training, the results to improve significantly in TOCT group compared to post-test of control group were the time of 10MWT and the time and the step of curved walking of F8WT. Conclusion : The present study suggests that the TOCT program may become a useful strategy for enhancing walking ability in the rehabilitation of stroke patients.

  • PDF