• Title/Summary/Keyword: vowel recognition

Search Result 138, Processing Time 0.027 seconds

A Study on Speechreading about the Korean 8 Vowels (한국어 8모음 자동 독화에 관한 연구)

  • Lee, Kyong-Ho;Yang, Ryong;Kim, Sun-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.173-182
    • /
    • 2009
  • In this paper, we studied about the extraction of the parameter and implementation of speechreading system to recognize the Korean 8 vowel. Face features are detected by amplifying, reducing the image value and making a comparison between the image value which is represented for various value in various color space. The eyes position, the nose position, the inner boundary of lip, the outer boundary of upper lip and the outer line of the tooth is found to the feature and using the analysis the area of inner lip, the hight and width of inner lip, the outer line length of the tooth rate about a inner mouth area and the distance between the nose and outer boundary of upper lip are used for the parameter. 2400 data are gathered and analyzed. Based on this analysis, the neural net is constructed and the recognition experiments are performed. In the experiment, 5 normal persons were sampled. The observational error between samples was corrected using normalization method. The experiment show very encouraging result about the usefulness of the parameter.

The influence of syllable frequency, syllable type and its position on naming two-syllable Korean words and pseudo-words (한글 두 글자 단어와 비단어의 명명에 글자 빈도, 글자 유형과 위치가 미치는 영향)

  • Myong Seok Shin;ChangHo Park
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.2
    • /
    • pp.97-112
    • /
    • 2024
  • This study investigated how syllable-level variables such as syllable frequency, syllable (i.e. vowel) type, presence of final consonants (i.e. batchim) and syllable position influence naming of both words and pseudo-words. The results of the linear mixed-effects model analysis showed that, for words, naming time decreased as the frequency of the first syllable increased, and when the first syllable had a final consonant. Additionally, words were named more accurately when they had vertical vowels compared to horizontal vowels. For pseudo-words, naming time decreased and accuracy rate increased as the frequency of the first or the second syllable increased. Furthermore, pseudo-words were named more accurately when they had vertical vowels compared to horizontal vowels. These results suggest that while the frequency of the second syllable had differential effects between words and pseudo-words, the frequency of the first syllable and the syllable type had consistent effects for both words and pseudo-words. The implications of this study were discussed concerning visual word recognition processing.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF

Study on the Neural Network for Handwritten Hangul Syllabic Character Recognition (수정된 Neocognitron을 사용한 필기체 한글인식)

  • 김은진;백종현
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.1
    • /
    • pp.61-78
    • /
    • 1991
  • This paper descibes the study of application of a modified Neocognitron model with backward path for the recognition of Hangul(Korean) syllabic characters. In this original report, Fukushima demonstrated that Neocognitron can recognize hand written numerical characters of $19{\times}19$ size. This version accepts $61{\times}61$ images of handwritten Hangul syllabic characters or a part thereof with a mouse or with a scanner. It consists of an input layer and 3 pairs of Uc layers. The last Uc layer of this version, recognition layer, consists of 24 planes of $5{\times}5$ cells which tell us the identity of a grapheme receiving attention at one time and its relative position in the input layer respectively. It has been trained 10 simple vowel graphemes and 14 simple consonant graphemes and their spatial features. Some patterns which are not easily trained have been trained more extrensively. The trained nerwork which can classify indivisual graphemes with possible deformation, noise, size variance, transformation or retation wre then used to recongnize Korean syllabic characters using its selective attention mechanism for image segmentation task within a syllabic characters. On initial sample tests on input characters our model could recognize correctly up to 79%of the various test patterns of handwritten Korean syllabic charactes. The results of this study indeed show Neocognitron as a powerful model to reconginze deformed handwritten charavters with big size characters set via segmenting its input images as recognizable parts. The same approach may be applied to the recogition of chinese characters, which are much complex both in its structures and its graphemes. But processing time appears to be the bottleneck before it can be implemented. Special hardware such as neural chip appear to be an essestial prerquisite for the practical use of the model. Further work is required before enabling the model to recognize Korean syllabic characters consisting of complex vowels and complex consonants. Correct recognition of the neighboring area between two simple graphemes would become more critical for this task.

Classification of nasal places of articulation based on the spectra of adjacent vowels (모음 스펙트럼에 기반한 전후 비자음 조음위치 판별)

  • Jihyeon Yun;Cheoljae Seong
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This study examined the utility of the acoustic features of vowels as cues for the place of articulation of Korean nasal consonants. In the acoustic analysis, spectral and temporal parameters were measured at the 25%, 50%, and 75% time points in the vowels neighboring nasal consonants in samples extracted from a spontaneous Korean speech corpus. Using these measurements, linear discriminant analyses were performed and classification accuracies for the nasal place of articulation were estimated. The analyses were applied separately for vowels following and preceding a nasal consonant to compare the effects of progressive and regressive coarticulation in terms of place of articulation. The classification accuracies ranged between approximately 50% and 60%, implying that acoustic measurements of vowel intervals alone are not sufficient to predict or classify the place of articulation of adjacent nasal consonants. However, given that these results were obtained for measurements at the temporal midpoint of vowels, where they are expected to be the least influenced by coarticulation, the present results also suggest the potential of utilizing acoustic measurements of vowels to improve the recognition accuracy of nasal place. Moreover, the classification accuracy for nasal place was higher for vowels preceding the nasal sounds, suggesting the possibility of higher anticipatory coarticulation reflecting the nasal place.

A Comparative Study of the Speech Signal Parameters for the Consonants of Pyongyang and Seoul Dialects - Focused on "ㅅ/ㅆ" (평양 지역어와 서울 지역어의 자음에 대한 음성신호 파라미터들의 비교 연구 - "ㅅ/ ㅆ"을 중심으로)

  • So, Shin-Ae;Lee, Kang-Hee;You, Kwang-Bock;Lim, Ha-Young
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.927-937
    • /
    • 2018
  • In this paper the comparative study of the consonants of Pyongyang and Seoul dialects of Korean is performed from the perspective of the signal processing which can be regarded as the basis of engineering applications. Until today, the most of speech signal studies were primarily focused on the vowels which are playing important role in the language evolution. In any language, however, the number of consonants is greater than the number of vowels. Therefore, the research of consonants is also important. In this paper, with the vowel study of the Pyongyang dialect, which was conducted by phonological research and experimental phonetic methods, the consonant studies are processed based on an engineering operation. The alveolar consonant, which has demonstrated many differences in the phonetic value between Pyongyang and Seoul dialects, was used as the experimental data. The major parameters of the speech signal analysis - formant frequency, pitch, spectrogram - are measured. The phonetic values between the two dialects were compared with respect to /시/ and /씨/ of Korean language. This study can be used as the basis for the voice recognition and the voice synthesis in the future.

The Effect of Syllable Frequency, Syllable Type and Final Consonant on Hangeul Word and Pseudo-word Lexical Decision: An Analysis of the Korean Lexicon Project Database (한글 두 글자 단어와 비단어의 어휘판단에 글자 빈도, 글자 유형, 받침이 미치는 영향: KLP 자료의 분석)

  • Myong Seok Shin;ChangHo Park
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.4
    • /
    • pp.277-297
    • /
    • 2023
  • This study attempted to find out how lexical decision of two-syllable words or pseudo-words is affected by syllabic information, such as syllable frequency, syllable (i.e. vowel) type, and presence of final consonant (i.e. batchim), through the analysis of the Korean Lexicon Project Database (KLP-DB). Hierarchical regression of RT data showed that lexical decision of words was influenced by the frequency of the first syllable, the syllable type of the first and second syllables, batchim for the first and second syllables, and also by the interaction of the two syllable types and the interaction of syllable frequency and batchim of the second syllable. For pseudo-words lexical decision was influenced by the frequency of the first and second syllables, syllable type of the first syllable, and batchim for the first and second syllables, and also by the interaction of the two syllable frequencies, the interaction of the two syllable types, and the interaction of syllable frequency and batchim of the first syllable. Word frequency had a strong effect on lexical decision of words, while syllabic information had a stable effect on the lexical decision of pseudo-words. These results indicate that syllabic information should be seriously considered in constructing word and pseudo-word lists and interpreting lexical decision time. Understanding the effect of syllabic information will also contribute to the understanding of word recognition process.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.