• 제목/요약/키워드: volume of fluid method

검색결과 652건 처리시간 0.031초

비정렬격자 2-유체 3-상 유동 해석 기법 (NUMERICAL METHOD FOR THE TWO-FLUID THREE-FIELD MODEL ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;윤한영;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.243-248
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed. A two-fluid three-field model was adopted for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. The hydrodynamic solver is for the 3D component of a nuclear system code and the component-scale analysis tools for transient two-phase flows. The finite volume method and unstructured grid are adopted, which are useful for the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been adapted to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing problems well.

  • PDF

다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동 (Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions)

  • 명현국;권영후
    • 대한기계학회논문집B
    • /
    • 제39권4호
    • /
    • pp.359-370
    • /
    • 2015
  • 본 연구는 다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동을 수치해석적으로 연구한 것이다. 액적 거동은 자체개발 코드(PowerCFD)를 사용하여 수치해석하였다. 수치해석에 사용된 코드는 보존적인 압력기반 유한체적방법에 기초한 비정렬 셀 중심 방법 및 VOF 방법에 체적포착법인 CICSAM을 채용하고 있다. 상세한 액적 거동이 다양한 초기 액적형상, 접촉각 및 표면장력(또는 Bond 수)의 조건하에서 얻어졌다. 또한 액적 이송 메커니즘이 액적 형상에 대한 수치해석 결과로부터 검토되었다.

자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증- (A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification-)

  • 김민수;신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

전동차용 견인전동기의 열유동 특성에 관한 전산해석 (Numerical Analysis on Heat Transfer and Fluid Flow Characteristics of Traction Motor for Electric Car)

  • 남성원;김영남;채준희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.137-143
    • /
    • 1998
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of traction motor for electric car SIMPLE algorithm based on finite volume method is used to make linear algebra equation. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the size of hole in stator core. In the case of high rotational speed of rotor, temperature difference along the axial direction is more decreased than that of low rotational speed.

  • PDF

기포-자유표면 상호작용에 대한 수치적 고찰 (Numerical Simulation of Bubble-Free Surface Interaction)

  • 양찬규;김현주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.48-57
    • /
    • 1999
  • This paper deals with the numerical simulation of the behavior of single bubble rising near the free surface. Volume fraction of fluid (VOF) method with continuum surface force (CSF) model, the well known method for two phase flow simulation is adopted. A bubble of spherical shape positioned beneath the free surface is assumed at the initial stage. The difference according to the fluid properties of surrounding medium is examined. Simulation results are depicted and explained with the time history of bubble shape, velocity field and vorticity distribution.

  • PDF

실험에 의한 직교류홴의 유량 및 소음 분석 (Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan)

  • 안철오;류호선
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

Simulations of pendant drop formation of a viscoelastic liquid

  • Davidson Malcolm R.;Harvie Dalton J.E.;Cooper-White Justin J.
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.41-49
    • /
    • 2006
  • A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are rep-resented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the 'bead-on-a-string' effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

잉크에 부분적으로 잠긴 회전하는 롤 주위의 액막 유동 해석 (Analysis of Film Flow Around Rotating Roller Partially Immersed in Ink)

  • 유승환;엄석기;이관수
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.1017-1023
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink properties (viscosity, surface tension), operating condition (roller rotating speed, initial immersed angle) on the film thickness. The result indicates that the film thickness has a strong dependency on the rotating speed, while the surface tension has negligible effect.

Numerical Simulation of Laminar Reacting Flows Using Unstructured Finite Volume Method With Adaptive Refinement

  • Kang, Sung-Mo;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.15-22
    • /
    • 2001
  • A pressure-based, unstructured finite volume method has been applied to couple the chemical kinetics and fluid dynamics and to capture effectively and accurately the steep gradient flame field. The pressure-velocity coupling is handled by two methodologies including the pressure-correction algorithm and the projection scheme. A stiff, operator-split projection scheme for the detailed nonequilibrium chemistry has been employed to treat the stiff reaction source terms. The conservative form of the governing equations are integrated over a cell-centered control volume with collocated storage for all transport variables. Computations using detailed chemistry and variable transport properties were performed for two laminar reacting flows: a counterflow hydrogen-air diffusion flame and a lifted methane-air triple flame. Numerical results favorably agree with measurements in terms of the detailed flame structure.

  • PDF