• Title/Summary/Keyword: volume meshing

Search Result 17, Processing Time 0.021 seconds

Tetrahedral Meshing with an Octree-based Adaptive Signed Distance Field (옥트리 기반의 적응적 부호거리장을 이용한 사면체 요소망 생성)

  • Park, Seok-Hun;Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • High-quality tetrahedral meshes are crucial for FEM-based simulation of large elasto-plastic deformation and tetrahedral-mesh-based simulation of fluid flow. This paper proposes a volume meshing method that exploits an octree-based adaptive signed distance field to fill the inside of a polygonal object with tetrahedra, of which dihedral angles are good. The suggested method utilizes an octree structure to reduce the total number of tetrahedra by space-efficiently filling an object with graded tetrahedra. To obtain a high-quality mesh with good dihedral angles, we restrict the octree in such a way that any pair of neighboring cells only differs by one level. In octree-based tetrahedral meshing, the signed distance computation of a point to the surface of a given object is a very important and frequently-called operation. To accelerate this operation, we develop a method that computes a signed distance field directly on the vertices of the octree cells while constructing the octree using a top-down approach. This is the main focus of the paper. The suggested tetrahedral meshing method is fast, stable and easy to implement.

Automated Adaptive Tetrahedral Element Generation for Three-Dimensional Metal Forming Simulation (삼차원 소성가공 공정 시뮬레이션을 위한 지능형 사면체 요소망 자동생성)

  • Lee M.C.;Joun M.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.189-194
    • /
    • 2006
  • In this paper, an automated adaptive mesh generation scheme, based on an advancing-front-Delaunay method, is presented fur finite element simulation of three dimensional bulk metal farming processes. Basic approach is introduced in detail, including a surface meshing and volume meshing technique and a mesh density control scheme. The presented approach is applied to automatic forging simulation in order to evaluate the effect of the developed schemes. Comparison shows a good agreement between required mesh density and generated mesh density, implying that the presented approach is appropriate for automatic mesh generation in metal forming simulation.

Octree-Based Adaptive Tetrahedral Meshing (옥트리 기반의 적응적 사면체 요소망구성)

  • Kim, Chul-Won;Park, Suk-Hoon;Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • This paper proposes a volume meshing method that fills the inside of an object with tetrahedra, of which dihedral angles are good. The suggested method is fast, stable and easy to implement It can also utilize an octree structure to space-efficiently fill an object with graded tetrahedra by reducing the total number of tetrahedra. To obtain a high-quality mesh with good dihedral angles, we restrict the octree such that any pair of neighboring cells only differs by one level. To efficiently construct a restricted-octree and generate a volume mesh from the octree, we utilize a signed distance field of an object on its bounded workspace. The suggested method can be employed in FEM-based simulation of large elasto-plastic deformation and tetrahedral-mesh-based simulation of fluid flow.

The Stereo Camera Measurement of Point Cloud on 3D Object and the Calculation of Volume Based on Irregular Triangular Mesh (스테레오 카메라와 측정에 의한 3D 대상체 포인트 클라우드의 불규칙 삼각 매싱 기반 체적 계산)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we proposed the algorithm computes the waste volume periodically for the way of waste repository standard. After stereo camera calibration, we obtained the point cloud on the surface of the object and took this as the input of the calculation algorithm of the object volume. We proposed the volume calculation algorithms based on the non-uniform triangular meshing methods and verified the validity of the algorithm through simulation and real experiments. The proposed algorithm can be used not only as the volume calculation of the waste repository but also as the general volume calculation of a three dimensional object.

Flexible CFD meshing strategy for prediction of ship resistance and propulsion performance

  • Seo, Jeong-Hwa;Seol, Dong-Myung;Lee, Ju-Hyun;Rhee, Shin-Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In the present study, we conducted resistance test, propeller open water test and self-propulsion test for a ship's resistance and propulsion performance, using computational fluid dynamics techniques, where a Reynolds-averaged Navier-Stokes equations solver was employed. For convenience of mesh generation, unstructured meshes were used in the bow and stern region of a ship, where the hull shape is formed of delicate curved surfaces. On the other hand, structured meshes were generated for the middle part of the hull and the rest of the domain, i.e., the region of relatively simple geometry. To facilitate the rotating propeller for propeller open water test and self-propulsion test, a sliding mesh technique was adopted. Free-surface effects were included by employing the volume of fluid method for multi-phase flows. The computational results were validated by comparing with the existing experimental data.

Volume Calculation for Filling Up of Rubbish Using Stereo Camera and Uniform Mesh (스테레오 카메라와 균일 매시를 이용한 매립지의 환경감시를 위한 체적 계산 알고리즘)

  • Lee, Young-Dae;Cho, Sung-Youn;Kim, Kyung;Lee, Dong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.15-22
    • /
    • 2012
  • For the construction of safe and clear urban environment, it is necessary that we identify the rubbish waste volume and we know the accuracy volume. In this paper, we developed the algorithm which computes the waste volume using the stereo camera for enhancing the environment of waste repository. Using the stereo vision camera, we first computed the distortion parameters of stereo camera and then we obtained the points cloud of the object surface by measuring the target object. Regarding the points cloud as the input of the volume calculation algorithm, we obtained the waste volume of the target object. For this purpose, we suggested two volume calculation algorithm based on the uniform meshing method. The difference between the measured volume such as today's one and yesterday's one gives the reposit of waste volume. Using this approach, we can get the change of the waste volume repository by reading the volume reports weekly, monthly and yearly, so we can get quantitative statistics report of waste volume.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

Added masses computation for unconventional airships and aerostats through geometric shape evaluation and meshing

  • Tuveri, Marco;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-257
    • /
    • 2014
  • The modern development in design of airships and aerostats has led to unconventional configurations quite different from the classical ellipsoidal and spherical ones. This new class of air-vehicles presents a mass-to-volume ratio that can be considered very similar to the density of the fluid displaced by the vehicle itself, and as a consequence, modeling and simulation should consider the added masses in the equations of motion. The concept of added masses deals with the inertia added to a system, since an accelerating or decelerating body moving into a fluid displaces a volume of the neighboring fluid. The aim of this paper is to provide designers with the added masses matrix for more than twenty Lighter Than Air vehicles with unconventional shapes. Starting from a CAD model of a given shape, by applying a panel-like method, its external surface is properly meshed, using triangular elements. The methodology has been validated by comparing results obtained with data available in literature for a known benchmark shape, and the inaccuracies of predictions agree with the typical precision required in conceptual design. For each configuration, a CAD model and a related added masses matrix are provided, with the purpose of assisting the practitioner in the design and flight simulation of modern airships and scientific balloons.

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

The Volume Monitoring System of a Landfill Facility Using Stereo Camera Measurement (스테레오 카메라 측정을 이용한 매립장 체적 감시 시스템)

  • Cho, Sung-Yun;Lee, Young-Dae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.5-8
    • /
    • 2013
  • 이 논문에서는 쓰레기 매립의 표준화 및 고도화를 위한 일환으로 쓰레기 체적을 주기적으로 계산하는 알고리즘을 제시하였다. 카메라 캘리브레이션 이후에 대상체의 표면에 대한 포인트 클라우드(point cloud) 데이타를 얻을 수 있었으며 이것을 제시된 체적 계산 알고리즘의 입력이 된다. 균일(uniform) 및 비균일 삼각 격자 기반 메싱(non-uniform triangular meshing) 방법에 기초한 두 개의 체적 계산 알고리즘을 제안하였으며 알고리즘의 타당성을 시뮬레이션과 실제 현장 실험을 통해 입증하였다.

  • PDF