• Title/Summary/Keyword: volume measurement

Search Result 1,621, Processing Time 0.025 seconds

Estimation of Non- Invasive Blood Pressure Using Peripheral Plethysmograph (말초혈관 혈류 측정을 이용한 비관혈적 혈압 추정법에 대한 연구)

  • Jeong In-cheol;Shin Tae-min;Yoon Hyung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.504-509
    • /
    • 2005
  • This paper presents a new method for obtaining the noninvasive and unrestrained blood pressure readings noninvasively and unrestrainedly using based on reflected wave arrival time(RAT) in the volume of pulse. Since this new method employs only volume pulse, is more rapider and simpler than the method using pulse transit time(PTT) because it only employs the volume of pulse. Blood pressure, PTT and RAT were acquired from 15 healthy subjects. Each subjects were performed forty trials of each measurement. As a result of those trials, the mean error between oscillometric and RAT measurements for systolic blood pressure was $4.55\pm5.64mmHg$. This result showed quite equal with the mean error between oscillometric and PPT measurf:ments, $4.22\pm5.30mmHg$, However, it was not obtained a satisfactory result in the relativity of oscillometric to both RAT and PPT measurements for diastolic blood pressure because of personal difference. To conclude, the method of systolic blood pressure estimation noninvasively and unrestrainedly using by RAT may be used as the method by PTT. Nevertheless, additional studies would be necessary for the RAT/PTT estimation of diastolic blood Pressure measurement.

Derivation of the Ambient Nitrogen Dioxide Mixing Ratio over a Traffic Road Site Based on Simultaneous Measurements Using a Ground-based UV Scanning Spectrograph

  • Lee, Han-Lim;Noh, Young-Min;Ryu, Jae-Yong;Hwang, Jung-Bae;Won, Yong-Gwan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • Simultaneous measurements using a scanning spectrograph system and transmissometer were performed for the first time over an urban site in Gwangju, Korea, to derive the ambient $NO_2$ volume mixing ratio. The differential slant column densities retrieved from the scanning spectrograph system were converted to volume mixing ratios using the light traveling distance along the scanning line of sight derived from the transmissometer light extinction coefficients. To assess the performance of this system, we compared the derived $NO_2$ volume mixing ratios with those measured by an in situ chemiluminescence monitor under various atmospheric conditions. For a cloudless atmosphere, the linear correlation coefficient (R) between the two data sets (i.e., data derived from the scanning spectrograph and from the in situ monitor) was 0.81; the value for a cloudy atmosphere was 0.69. The two sets of $NO_2$ volume mixing ratios were also compared for various wind speeds. We also consider the measurement errors, as estimated from an error propagation analysis.

A TWO-DIMENSIONAL FINITE VOLUME MODEL IN NONORTHOGONAL COORDINATE SYSTEM

  • Kim, Chang-Wan;Lee, Bong-Hee;Cho, Yong-Sik;Yoon, Tae-Hoon
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to simulations of flows in a 180 degree curved bend flow. Numerical prediction are compared to available laboratory measurement. A good agreement is observed.

  • PDF

A Measurement of Heart Ejection Fraction using Automatic Detection of Left Ventricular Boundary in Digital Angiocardiogram (디지탈 혈관 조영상에서의 좌심실 경계 자동검출을 이용한 심박출 계수의 측정)

  • 구본호;이태수
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.177-188
    • /
    • 1987
  • Detection of left ventricular boundary for the functional analysis of LV(left ventricle) is obtained using automatic boundary detection algorithm based on dynamic program ming method. This scheme reduces the edge searching time and ensures connective edge detection, since it does not require general edge operator, edge thresholding and linking process of other edge detection methods. The left ventricular diastolic volume and systolic volume were computed after this automatic boundary detection, and these volume data were applied to analyze LV ejection fraction.

  • PDF

Electrical Conduction Characteristics of Ultra High Voltage Cable for Prevention of Electrical Fires (전기 방재를 위한 초고압케이블의 전기 전도 특성)

  • Park, Hee-Doo;Park, Ha-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.216-217
    • /
    • 2007
  • In this paper we investigated the volume resistivity and AC conduction current according to the temperature and voltage. As a result, the volume resistivity comes to be small according to the measurement temperature and voltage. AC conduction current of the heat treatment specimen is increased because of the decrease of insulation.

  • PDF

Development of Ultrasound Phantom for Volume Calibration (부피 측정을 위한 초음파 팬텀 개발)

  • Kim, Hye-Young;Lee, Ji-Hae;Lee, Kyung-Ja;Suh, Hyun-Suk;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.227-230
    • /
    • 2008
  • The purpose of this study was to design and construct an ultrasound phantom for volume calibration and evaluate the volume measurement accuracy of a 2 dimensional ultrasonic system. Ultrasound phantom was designed, constructed and tested. The phantom consisted of a background material and a target. The background was made by mixing agarose gel with water. A target, made with an elastic material, was filled with water to vary its volume and shape and inserted into background material. To evaluate accuracy of a 2 dimensional ultrasonic system (128XP, ACUSON), three different shapes of targets (a sphere, 2 ellipsoids and a triangular prism) were constructed. In case of ellipsoid shape, two targets, one with same size length and width (ellipsoid 1) and another with the length 2 times longer than width (ellipsoid 2) were examined. The target volumes of each shape were varied from 94cc to 450cc and measurement accuracy was examined. The volume difference between the real and measured target of the sphere shape ranged between 6.7 and 11%. For the ellipsoid targets, the differences ranged from 9.2 to 10.5% with ellipsoid 1 and 25.7% with ellipsoid 2. The volume difference of the triangular prism target ranged between 20.8 and 35%. An easy and simple method of constructing an ultrasound phantom was introduced and it was possible to check the volume measurement accuracy of an ultrasound system.

  • PDF

Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta (위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정)

  • Kim, Moon Sun;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.142-148
    • /
    • 2016
  • To evaluate the effect of flip angle on flow rate measurements obtained with phase contrast MRI according to the flip angle degree in ascending aorta and velocity encoding (VENC) was (150 m/s). 1.5T MRI in patients 17 (female: 8, male: 9, mean age $57.9{\pm}15.4$) as a target by applying a non-breath holding techniques to flip angle VENC (150 cm/s) in each of the ascending aorta was measured by changing $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$. Blood was obtained a peak velocity, average velocity, net forward volume, net forward volume/body surface area. Ascending aorta from average velocity (AV) measured the average value of the flip angle $20^{\circ}$ (9.87 cm/s), $30^{\circ}$ (9.6 cm/s) and $40^{\circ}$ (10.05 cm/s). Blood flow VENC in was blood flow change in flip angle change was high most blood flow measurement when the flip angle $30^{\circ}$ in VENC, crouching each blood flow is also proportional to the increases in the $20^{\circ}$ to $40^{\circ}$ and was increased, the deviation of the peak velocity and the average velocity is the smallest deviation from the flip angle $30^{\circ}$. Flip angle $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$ in peak velocity, average velocity, net forward volume, net forward volume/body surface area was no statistically significant difference (p > .05). Blood flow velocity and blood flow is measured by applying to adjust the flip angle accurately calculate the blood flow is important information for diagnosis and treatment of cardiovascular diseases, and can help in the examination on the blood flow measurement.

Estimation of Soil Volume Conversion Factors using Nondestructive Testing Methods (비파괴시험기법을 이용한 토량환산계수 산정 방법 제시)

  • Son, Thai An;Ryu, Hee-Hwan;Cho, Gye-Chun;Hong, Eun-Soo;Jin, Gyu-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.717-721
    • /
    • 2010
  • Soil volume conversion factors are used for estimation of an excavated the soil volume which will be removed or added in levelling the ground surface of a construction site. An accurate evaluation method will help us reduce a construction cost and time consuming. In this study, we performed the laboratory tests, including grain size measurement, water content, specific gravity, porosity, density and XRD tests, to suggest reliable soil volume conversion factors and weathering indices in field using nondestructive methods. The weathering index and soil volume conversion factor L are obtained for different types of soils. At results, the CIW index is the best method measuring the weathering index and the factor L is relative to natural porosity, void ratio, density and dry density.

  • PDF

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.

Phase Identification of Nano-Phase Materials using Convergent Beam Electron Diffraction (CBED) Technique

  • Kim, Gyeung-Ho;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.47-56
    • /
    • 2006
  • Improvements are made to existing primitive cell volume measurement method to provide a real-time analysis capability for the phase analysis of nanocrystalline materials. Simplification is introduced in the primitive cell volume calculation leading to fast and reliable method for nano-phase identification and is applied to the phase analysis of Mo-Si-N nanocoating layer. In addition, comparison is made between real-time and film measurements for their accuracy of calculated primitive cell volume values and factors governing the accuracy of the method are determined. About 5% accuracy in primitive cell determination is obtained from camera length calibration and this technique is used to investigate the cell volume variation in WC-TiC core-shell microstructure. In addition to chemical compositional variation in core-shell type structure, primitive cell volume variation reveals additional information on lattice coherency strain across the interface.