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Abstract: A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized

by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to

simulations of flows in a 180 degree curved bend flow. Numerical predictions are compared to available laboratory

measurements. A good agreement is observed.
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1. INTRODUCTION

The finite volume method was firstly intro-
duced in the field of computational fluid dy-
namics independently by McDonald(1971), and
by MacCormack and Paullay(1972) to solve
two-dimensional, time-dependent Euler equa-
tions. The method takes merits of both the finite
difference and finite element methods. That is,
in a sense, the finite volume method can be con-
sidered as a finite difference method applied to
the differential conscrvative form of the conser-
vation laws, written in arbitrary coordinate sys-
tems. Hence, this method can be applied by us-
ing an unstructured grid system as in the finite
element method.

In general, the discretization of the governing

equations in the control volume method can

guarantee the conservation of mass, momentum
and energy. Such conservation can be further
sure to be the same as that in the original differ-
ential equations if the model is built based on
the differential equations in a strong conserva-
tive form. This is probably the major advantage
of the finite volume method. Furthermore, an
additional numerical-source term is introduced
if the shallow-water equations are discretized in
a nonconserved form. For a continuous flow
simulation, this additional numerical-source
term has the same order of magnitude as the
truncation error and it is usually negligible.
However, for discontinuous flows, this term can
become significantly large across the disconti-
nuity and can cause serious errors (Hirsch,
1988).

The finite volume method is also known to
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need less computational cffort than the finite
element method. Since the finite volume method
is based on the integral form of the conservation
equation, a conserved scheme can be easily con-
structed. As the space and time-step sizes ap-
proach zero, the scheme becomes consistent
with the differential equations of conscrvation
laws.

The main objective of this study is to present
the development of a two-dimensional numeri-
cal model in a nonorthogonal curvilinear coor-
dinate system to solve the two-dimensional
shallow-water equations. In the following sec-
tion, the shallow-water equations are introduced.
Coordinate transformation is then described in
section 3 and numerical scheme is presented in
section 4. The boundary conditions employed in
this study are also summarized in section 4. In
section 5, the numerical model is tested by
comparing the numerical solutions with existing
laboratory measurements. Finally, concluding

remarks are made in section 6.
2. GOVERNING EQUATIONS

Two-dimensional shallow-water equations
can be written in the following conserved form

(Yoon and Kim, 1996a)

o, 5(1110)+ 6(HV):O )
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where ¢ is the free surface displacement. H
is the total water depth defined as H =h+(¢

with / being a still water depth. U and V are
the depth-averaged horizontal velocity compo-

nents. " and 7%

are the shear stresses acting
on the free surface and the channel bottom, re-
spectively, v represents the eddy viscosity, and
p is the density of the fluid. The detailed de-
scription of the shear forces acting on the water
surface and the channel bottom is given by Yoon
and Kim(1996b).

If a linear distribution of shear stress has been
assumed, the depth-averaged eddy viscosity

used in the momentum equations is given by

v =2 UH ()

in which « is the von Ka'rma'n constant,
which is approximately equal to 0.4, and U« is

the shear velocity given by

(5)

The momentum equations (2) and (3) can be
generalized as

o(Hg) . AUHg) . o(VH®)

ot ox ay (6)
A Y A
f—/(HgaA—qjj + %EH‘ECA—(&] +3S,
ox ox) oy cy

in which ¢ 1is an arbitrarily dependent variable,
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¢ is the diffusion coefficient, which can stand
either for the eddy viscosity of the momentum
equations or for the eddy diffusion coefficient of
the constituent transport equation, and S, de-
notes the source term of a dependent variable.

By considering a total flux consisted of the
advection flux and diffusion flux, equation (6)
can be rewritten as

s, (7

where J, and J, aredcfined as

Z 5
Jo=tHUs -1l —mvg-nel (g
ox : (8%

3. COORDINATE TRANSFORMATION

In this section, a coordinate transformation is
described. The generalized coordinate system
used in this study is plotted in Figure 1. In the
figure, a nonorthogonal coordinate system
(&,7) is a function of &(x.y) and n(x.v).
The contravariant vectors e and e”are de-

fined to be perpendicular to the surfaces where

Fig. 1. A definition sketch of the nonerthogonal
coordinate system
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both ¢&

vectors €:and e, are defined to be tangent to

and 7 arc constant. The covariant

the axcs of &and 7, respectively. The vector-

ized forms of the contravariant and covariant
vectors are given in the following equa-

tions( Thompson et al., 1985)

. &, 0
el __’_[g_i_éijj (9a)
hy\Cn O
I dv ., x
el =— ——jt+—j 9b
/15[ o& (7§JJ (5b)
1 {ov, @&
e:=—| —j+L (10a)
I {dxv., ¢
e, =— —it+t— (10b)
h, \ ¢n an

2 2 2 2
ox v Cx ay
hf =M=z Y= ’hl] a1 Rl B
” o& & an an
(1)

Various relationships between the contravarient
and covariant vectors, given in equations (9) and
(10}, could be derived as follows

=0, e, e:=cosd

e’.e” =-cost, e -e; =sinb, e" ‘e, =sint

(12)

Let velocity vector in the Cartesian coordi-
nates be v and the scalar product of v and

N n & n
e., e, e, e bcou:, v, u, u

e , con-

!}’

secutively. Then, v can be expressed as
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- hehy

h:h .
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a

(13)

a

&
where u°and u” can be expressed as func-

tions of u, and u, givenby

Ayity = Pyl

7 h»f

Azug — Peut
uC: g s Wl =

14
h ’ ( )

and the following relationships have been used

2
ox Oy Ox heh
Ja :_;_Q——’a: :—g—i,ﬂé‘: = aé:ef 'e,7,
& dn 8 on Jy
hyh?
ap=——fy =L €,

T

a

(1s)

The gradients of function f in the directions

of e:and e, are given as

of . of .
——=h.V €r, — =4 Vf-e 16
65 l*: j < 0,7 n / n ( )

4. NUMERICAL SCHEME

The governing equations presented in the
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previous section are discretized by the finite
volume method in this section. The notation
system of Patankar(1980) has been adopted
throughout this study. A typical control volume
for node P is shown in Figure 2, where the
uppercase letters denote the neighboring nodes
and the lowercase letters represent the control
volume faces.

The final discretized form of equation (6) is
given by

appp =appp +aydy +andy +asps +b+byo

(17

The coefficients of equation (17) can be ob-
tained from the following uniform format

ag :a(P(’)De » Ay 20(— PW)DW’
ay :a(Pn)Dna as :a(_Ps )Ds (183)
ap=ap+ay +ay+ag+F,~-F +F,—F +

AEA
Hpd, il” (18b)
AéA
b:S¢JuA§A’7+H?’¢1gJa %ia
bNO :‘]Ae_‘}w*'jn —js (18C)

in which a(p):lo, (1#0.1|p|)5j is given by the

Avelocity and flux
Fig. 2. A schematic sketch of a control volume in the nonorthogonal coordinate system

e depth
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Fig. 3. Velocity vectors in the curvilinear coordinate system

power-law scheme, the superscript ¢ denotes

time step and the other terms are given as

F,=H ,(&;n: —[J?_cu,})dizp s

F,=H, X slis ~ }6 ”I;) 4mn,
F,=H, (a,]zzﬁ - ﬁ,]u:) Ay
Fo=H ey, - By ) AL, {19a)
Hoeotrz, Hwa(,,aaw

[ i
D, = R

ih A¢ ;

6.

!] Ay
19b
I!z,ijfgi (5h)

7en

= ‘/} An ;

H,& ay,

. { He qﬁ} He og )
"jf.:ﬂf }Tax ) qu:ﬁf,r “‘{:";‘FI;J
1S A 7]
He &g . [ He o
- - T Ay
(19¢)

If ¢ is replaced by 4: OF u, in equation

(19¢}, the equation becomes the momentum
equation. As shown in Figure 3, e.s at £,

W, N.and § may have different directions
from that at 2. The velocity components only

parallel to (e_z)[, have to be considered. Thus,
the momentum equation in the & -direction is

written as

dptts p
’ ' ‘ . v 2
=dps gt dpley + Ayt y o+ ”S“f,.‘)‘ + o+ b!\‘o
= l']["lf':’{;; + iluxlif'",' + (J‘,\'H;;‘N ES uS"f,S +h+ l‘)/y()
+tap (tl:r’:’[{ U g )+ dy (u:_:,”; Uy )+ ay (u:_cw —He )

tag (”:S.S THes
Slptis p b dgplte g Vgl y bagis g+ b+
byg + b

(20)

in which b, is the additional term due to the

)

dlpo

curvature and #} , =V, ‘{e

) > and

Uiy =V (e:}]). ey =V - (e A

wes =vg-les),.

o

The momentum equation in the 1 -direction

can be also derived in the same manner.

The coupling between depth and velocity is
done by the depth and velocity correction pro-
cedure analogous to the pressure and velocity
SIMPLER
scheme(Patankar, 1980), The velocities ealeu-

correction  procedure  of the
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lated by the momentum equations may not ex-
actly satisfy the continuty equation because the
depth still remains as assumed.

To satisfy the continuity equation, a proper
correction of depth and velocities is needed as
follows

H=H" +H (21a)

*
Ug =g+ u,’i (21b)

¥
U,y =uy +uy (21¢)

in which H'

u} and u;]

is a value of depth correction,
are values of velocity correction,

and the superscript * denotes the value of a pre-
vious iteration step.

By applying equation (21) to the discretized
continuity

equation, the following first

depth-correction equation can be obtained as

apHp =agHp +ayH' yrayHy +agHg +b+ by

(22)
where the coefficients are given as
ag =H,az,d,An,, ay = H, Wl wd W An,
any = Hn n.n nAgn
asg = H.\' a/;,xd,\'Aé:s :
AéA
ap=dp +ay +ay +ag +Ja——i—'7 (23a)
t
* AéA
b= —(HP —Hg)la—gl—ﬂ a, u; A1,
At
+ Hwaﬁ wHtE, MA']w
* * *
- Hnal],nuq,r1A‘§n + H,&' al].sul],sAfs (23b)

* * * *
bNO = He ﬂﬁ,e”q eA e — Hwﬁ,",w”l},wll /M
Hnﬂry,n £, nAén Hs ﬂz],su{f,xl‘év (23¢)
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Because the depth-correction is related to the
iterating velocities, the solution converges very
slowly. To improve the convergence, another
depth-correction equation, not related to the
iterating velocities, is needed. Redefining
H=H +H" gives the other depth-correction

equation expressed as

apH;) :aEHZ; +(1LVH;/’V +GNH")’V +aSHg' ‘+‘b+bN()

(24)

where the coefficients except & and b, are

the same as those given in equation (23),
whereas b and b, are given as

* AéA
0 c4an
h:_(HP_HP)/a a —H ac(l‘f A,

+Hoas i A4n,,

WAE WHE

Hnaly nty, 0 A, + H sOnpstn, sAé:s (25a)
bNO = He f,eur],eAUe -

+ Hnﬂr],nl;:,nA‘fn B H,v ﬂr;,,\'ui,sAés (25b)

HW ‘_, W ul] H‘Ar]lt

in which the pseudo-velocity d;e is defined in

equation (26) and the other pseudo-velocities

can be also defined in a similar manner.
. 1
Uze =7=\2 Attt * b+byo +be
e

{2 o)

e

iy -rp+zp-2,) (26)

The flow regions are surrounded by a solid
wall, inlet, and outlet. A slip boundary condition
is applied to velocities on the wall, whereas
Dirichlet or Neumann conditions have to be
given properly according to the flow condition
for the inlet and outlet. The boundary conditions
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used in this study can be summarized as follows.
That is, at the solid wall parallel with & -axis,

the boundary conditions arc given as

A 2
‘_'AH_:(), 2 _y 27
cn on

At the solid wall parallel to 7 -axis, the bound-

ary conditions are given as

Mq_o oH

~ e * -

g s

,
u. =0, o,ifzo (28)

At the flow boundary where Dirichlet conditions

arc given, the boundary conditions are given as

Ueg =Ue given s Uy = Uy given » H=H

¢ = ¢g1’vcn (29)

given

At the flow boundary where Neumann condi-
tions arc given in the & -direction, the boundary

conditions are given as
SH 0

0, <L-0 (30

)

~
S

oE oz oE

At the flow boundary where Ncumann condi-
tions are given in the 77 -direction, the boundary

conditions are given as

Cu = cu & O
g, Yy, Mg, Py @
on én an on

In computations, the alternating direction im-
plicit scheme is vsed to discretize those equa-
tions described previously.

5. NUMERICAL EXAMPLE

In this section, the performance of the devel-

oped model is examined by comparing numeri-
cal predictions to available laboratory measure-
ments. Two examples are chosen: a flow in a
180° curved bend and a flow in a converging
channel.

The numerical model is firstly applied to the
simulation of flow in a bend. Obtained results
are compared to laboratory measurements of the
Shukry's 180" curved waterway (Shukry, 1950;
Chow,1959).

In ¢xperiments, the width of a waterway is
0.3m, the lengths of straight reaches in both
upstream and downstream arc Im, respectively,
and the radius of the curvature in the bend is
0.15m. To reproduce the Shukry's experiment, a
nonorthogonal curvilinear grid system was used.
The width was divided in to 20 grids and the
lengths of straight reaches were divided into 10
grids, while the length of the bend was divided
into 18 grids with an angle of 10”. For flow in
the bend, the boundary conditions at upstream
are u# =0.778 m/sec and v =0 m/s, whereas
that at downstream is H = 0.3m. In computa-
tion, the flow reaches an equilibrium state after
about 200 iterations. The Manning roughness
coefficient of 0.01 is used in the model.

In Figure 4, velocity vectors in the bend are
plotted. Velocity vectors are parallel to x -axis
at upstream, whereas they are curved along the
bend and then parallel to x-axis again. Along
the curved part, the magnitudes of velocity vec-
tors along the inner bank arc greater than those
along the outer bank. This can be explained by
the free vortex. That is, the magnitude of a ve-
locity component is inversely proportional to the
curvature of a channel.

Numerical solutions of the water surface lev-
els along the inner and outer banks are displayed
in Figurc 5. Laboratory experimental measure-
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Fig. S. Water surface elevation the 1800 bend flow: (a) along the inner bank, (b) along the outer bank

ments are also plotted for a comparison. The
agreement is reasonable along the outer bank as
shown in Figure 5(a), while it is not good along
the inner bank as shown in Figure 5(b). Spe-
cially, the disagreement is pronounced near the
curved reach of the channel. This is probably
because of the depth averaging property of the
developed numerical model. However, the over-
all agreement is reasonable.

The model is secondly employed to investi-
gate the behavior of the flow in a converging
channecl. Figure 6 shows the contour of depths in
the converging channel used by Coles and Shin-
taku(1943). As shown in the figure, the channel
is linearly converging from x=0.2980 m to
x=1.7780m. To model Coles and Shintaku's

experiment, a nonorthogonal curvilinear grid
system has also been used.

All 21 grids are used in the longitudinal di-
30 grids
cross-sectional direction(4 grids in the upstream,

rection, while are used in
20 grids in the converging part and 6 grids in the
downstream). The Manning roughness coeffi-
cient is 0.007. The boundary conditions at up-
stream are u =225 m/sec, v=0 m/sec and
h=0.319m. The Froude number is 1.27 and
thus the flow regime at upstream is supercritical.

In Figure 7, contours of the surface elevation
obtained from the developed model are plotted.
The interval between two adjacent contours is
0.0025m. By comparing Figure 7 to Figure 6 a

reasonable agreement is observed. Velocity
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vectors in the converging channel arc shown in
Figure 8. The magnitude of the velocity is more
or less constant. The water surface elevation is
plotted in Figure 9. The clevation is increasing
as the channel is converging as expected in a
supercritical flow.

Finally, the water surface clevation along the
centerline is shown in Figure 10. As the number
of meshes increases the numerical prediction
approaches closely laboratory measurements.
Although the numerical model slightly underes-
timate clevations at x = 1.4m and 1.6m, the

overall agreement is promising.
6. CONCLUDING REMARKS

In this study, a numerical model solving the
two-dimensional shallow-water equations 15
developed. The model employs the finite vol-
ume method to discretize the governing equa-
tions in nonorthogonal curvilinear coordinate
system.

Two examples whose laboratory measure-
menis are available arc employed to test the
performance of the developed model. The com-
puted predictions have been compared to avail-
able laboratory experimental data and the
agreement between the computed and experi-
mental results is reasonable. It was also shown
that the model provides physically acceptable
results although a coarse grid system is used.
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