• Title/Summary/Keyword: volume graphics

Search Result 118, Processing Time 0.021 seconds

The Study about the Influence of Mathematics Language on Mathematics Reading

  • YANG, Hongping;YU, Ping
    • Research in Mathematical Education
    • /
    • v.19 no.4
    • /
    • pp.267-278
    • /
    • 2015
  • The study is about the influence of literal, symbolic and graphics languages on mathematics reading. The results show that the scores of symbolic language volume are significantly lower than that of literal language volume. The abstractness of the mathematical symbols will not have a significant impact on the students with excellent mathematical academic, but as for the medium and poor students, abstract mathematics symbols will cause their cognitive impairment. Due to picture-superiority-effect, the test scores of the graphics language volume are significantly higher than that of the symbolic language volume. Graphics language will have a significant impact on the excellent and medium students, but has no impact on the poor students.

Approximating 3D General Sweep Boundary using Graphics Hardware (그래픽스 하드웨어를 이용한 입체 스윕 경계 근사)

  • An, Jae-U;Kim, Myeong-Su;Hong, Seong-Je
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a practical technique for approximating the boundary surface of the volume swept out by three-dimensional objects using the depth-buffer. Objects may change their geometries and orientations while sweeping. The sweep volume is approximated as a union of volume elements, which are just rendered inside appropriate viewing frusta of virtual cameras and mapped into screen viewports with depth-buffer. From the depth of each pixel in the screen space of each rendering, the corresponding point in the original world space can be computed. Appropriately connecting these points yields polygonal faces forming polygonal surface patches approximately covering some portion of the sweep volume. Each view frustum adds one or more surface patches in this way, and these presumably overlapped polygonal surface patches approximately enclose the whole sweep volume. These patches may further be processed to yield non-overlapped polygonal surfaces as an approximation to the boundary of the original 3D sweep volume.

  • PDF

Improvement Depth Perception of Volume Rendering using Virtual Reality (가상현실을 통한 볼륨렌더링 깊이 인식 향상)

  • Choi, JunYoung;Jeong, HaeJin;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.29-40
    • /
    • 2018
  • Direct volume rendering (DVR) is a commonly used method to visualize inner structures in 3D volumetric datasets. However, conventional volume rendering on a 2D display lacks depth perception due to dimensionality reduction caused by ray casting. In this work, we investigate how emerging Virtual Reality (VR) can improve the usability of direct volume rendering. We developed real-time high-resolution DVR system in virtual reality, and measures the usefulness of volume rendering with improved depth perception via a user study conducted by 38 participants. The result indicates that virtual reality significantly improves the usability of DVR by allowing better depth perception.

TF color mapping for direct volume rendering with CNN (직접 볼륨 렌더링을 위한 CNN 기반 TF 색상 매핑)

  • Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.25-32
    • /
    • 2021
  • Direct Volume Rendering(DVR) renders by projecting data into a two-dimensional space without calculating the volume surfaces. In DVR, the transfer function(TF) assigns light properties such as color and transparency to the volume. However, it takes a long time for beginners to manipulate TF to understand volume data and assign colors. This paper proposes an approach to colorize the volume using sample images for intuitive volume rendering. We also discuss color extraction methods using K-means clustering.

A Data Structure for Real-time Volume Ray Casting (실시간 볼륨 광선 투사법을 위한 자료구조)

  • Lim, Suk-Hyun;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.1
    • /
    • pp.40-49
    • /
    • 2005
  • Several optimization techniques have been proposed for volume ray casting, but these cannot achieve real-time frame rates. In addition, it is difficult to apply them to some applications that require perspective projection. Recently, hardware-based methods using 3D texture mapping are being used for real-time volume rendering. Although rendering speed approaches real time, the larger volumes require more swapping of volume bricks for the limited texture memory. Also, image quality deteriorates compared with that of conventional volume ray casting. In this paper, we propose a data structure for real-time volume ray casting named PERM (Precomputed dEnsity and gRadient Map). The PERM stores interpolated density and gradient vector for quantized cells. Since the information requiring time-consuming computations is stored in the PERM, our method can ensure interactive frame rates on a consumer PC platform. Our method normally produces high-quality images because it is based on conventional volume ray casting.

  • PDF

Exploiting Programmable Shaders in Hardware-Assisted Volume Rendering (PC용 그래픽스 가속기의 쉐이더 기능을 이용한 볼륨 렌더링)

  • Im, In-Seong;Gang, Byeong-Gwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2002
  • In this paper, we describe an implementation technique that extends the classification and shading capabilities offered by previously reported hardware-assisted volume rendering algorithms. In designing our rendering scheme, we exploited the programmable shader technology supported by the latest consumer PC graphics hardware. Our direct volume rendering technique enables to simultaneously display up to four materials, and to dynamically control gradient magnitude to emphasize or de-emphasize surface boundaries. It can easily create lighting effects such as light source attenuation, depth cueing, and multiple light sources that were often difficult to realize in previous hardware-assisted volume rendering.

  • PDF

Real-time BCC Volume Isosurface Ray Casting on the GPU (GPU를 이용한 실시간 BCC 볼륨 등가면 레이 캐스팅)

  • Kim, Minho;Lee, Young-Joon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2012
  • This paper presents a real-time GPU (graphics processing unit) ray casting scheme for rendering isosurfaces of BCC (body-centered cubic) volume datasets. A quartic spline field is built using the 7-direction box-spline filter accompanied with a quasi-interpolation prefilter. To obtain an interactive rendering speed on the graphics hardware, the shader code was optimized to avoid lookup table and conditional branches and to minimize data fetch overhead. Compared to previous implementations, our work outperforms the comparable one by more than 20% and the rendering quality is superior than others.

Visualizer for real number domain data and its applications (실수 정의역 데이터 시각화와 그 응용 사례)

  • Lee, Sung-Ho;Park, Tae-Jung;Kam, Hyeong-Ryeol;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2010
  • Effective visualizing is an important issue when one processing real number domain volume data such as distance fields, or volume texture. In this paper, we introduce a framework for inspecting, magnifying, cross-section viewing of real number domain volume data from an implementation of a simple interface. The interface can be freely implemented from any kind of existing algorithm, so that we can easily view the result and evaluate the algorithm.

Image Space Occlusion Shading Model for Iso-surface Volume Rendering (등위면 볼륨렌더링을 위한 이미지 공간 폐색 쉐이딩 모델)

  • Kim, Seokyeon;You, Sangbong;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The volume rendering has become an important technique in many applications along with hardware development. Understanding and perception of volume visualization benefit from visual cues which are available from shading. Better visual cues can be obtained from global illumination models but it's huge amount of computation and extra GPU memory need cause a lack of interactivity. In this paper, in order to improve visual cues on volume rendering, we propose an image space occlusion shading model which requires no additional resources.

An Efficient Visualization Method for Interactive Volume Rendering (대화식 볼륨 렌더링을 지원하는 효율적인 가시화 방법)

  • Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • In order to widely use volume rendering technology in practical fields, a user should be able to control the classification parameter interactively and extract a meaningful information easily from the 3D data as fast as it can be. Previous work on an accelerating volume rendering reconstructs an isotropic volume from an anisotropic one and classifies in pre-processing time and then renders the classified volume rapidly in run time. But, this traditional step may result in long pre-processing time and no real-time feedback. In this paper, we present an efficient classification and rendering method that allows a user to set the opacity transfer function interactively at rendering time on a personal computer without special-purpose hardware.

  • PDF