DOI QR코드

DOI QR Code

Image Space Occlusion Shading Model for Iso-surface Volume Rendering

등위면 볼륨렌더링을 위한 이미지 공간 폐색 쉐이딩 모델

  • Kim, Seokyeon (Dept. of Computer Engineering, Sejong University) ;
  • You, Sangbong (Dept. of Computer Engineering, Sejong University) ;
  • Jang, Yun (Dept. of Computer Engineering, Sejong University)
  • 김석연 (세종대학교 컴퓨터공학과) ;
  • 유상봉 (세종대학교 컴퓨터공학과) ;
  • 장윤 (세종대학교 컴퓨터공학과)
  • Received : 2014.09.26
  • Accepted : 2014.11.06
  • Published : 2014.12.01

Abstract

The volume rendering has become an important technique in many applications along with hardware development. Understanding and perception of volume visualization benefit from visual cues which are available from shading. Better visual cues can be obtained from global illumination models but it's huge amount of computation and extra GPU memory need cause a lack of interactivity. In this paper, in order to improve visual cues on volume rendering, we propose an image space occlusion shading model which requires no additional resources.

볼륨렌더링은 주로 의학 및 과학 분야에서 사용되는 기법이었으나, 하드웨어의 발달과 더불어 다양한 응용프로그램에서의 적용이 가능해짐에 따라 볼륨렌더링에 대한 관심이 증가하고 있다. 볼륨렌더링의 시각화에 있어서 쉐이딩은 물체의 깊이 정보를 효율적으로 전달하여 시각적 인지에 큰 도움이 된다. 전역조명을 사용하면 시각적 인지를 향상시킬 수 있지만, 많은 GPU 메모리의 사용과 긴 연산시간으로 인해 프로그램과의 상호작용에 영향을 미친다. 본 논문에서는 렌더링 속도의 저하를 최소화하며 볼륨렌더링에 사실적인 쉐이딩을 적용하기 위하여 이미지 공간 폐색 쉐이딩 모델을 제안하고자 한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. William Thompson, Roland Fleming, Sarah Cree-Regehr, Jeanine Kelly Stefanucci, Visual Perception from a Computer Graphics Perspective, A. K. Peters, Ltd., Natick, MA, 2011.
  2. N.Max, Optical models for direct volume rendering, IEEE Transactions on Visualization and Computer Graphics, 1(2):99-1089, June 1995. https://doi.org/10.1109/2945.468400
  3. M.Levoy, Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3):29-37, 1988. https://doi.org/10.1109/38.511
  4. J.Kniss, S.Premoze, C.Hansen, P.Shirley, and A.McPherson. A model for volume lighting and modeling. IEEE Transactions on Visualization and Computer Graphics, 9(2):150-162, 2003. https://doi.org/10.1109/TVCG.2003.1196003
  5. M.Tarini, P.Cignoni, and C.Montani, Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5):1237-1244, 2006. https://doi.org/10.1109/TVCG.2006.115
  6. J. Diaz, P.-P. Vazquez, I. Navazo, and F. Duguet. Technical section:Real-time ambient occlusion and halos with summed area tables. Computer and Graphics, 34(4):337-350, 2010. https://doi.org/10.1016/j.cag.2010.03.005
  7. T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and K. H. Hinrichs. Interactive volume rendering with dynamic ambient occlusion and color bleeding. Computer Graphics Forum (Eurographics 2008), 27(2):567-576, 2008.
  8. F. Lindemann and T. Ropinski. Advanced light material interaction for direct volume rendering. In R. Westermann and G. Kindlmann, editors, IEEE/EG International Symposium on Volume Graphics, pages 101-108, 2010.
  9. T. Ropinski, C. Doring and C. Rezk-Salama. Interactive volumetric lighting simulating scattering and shadowing. IEEE Pacific Visualization Symposium (PacificVis 2010), pages 169-176, 2010.
  10. G.Papaioannou, M.L.Menexi, and C.Papadopoulos. Real-time volume-based ambient occlusion. IEEE Transactions on Visualization and Computer Graphics, 16(5):752-762, 2010. https://doi.org/10.1109/TVCG.2010.18
  11. A.Tikhonova, C.D.Correa, and K.L.Ma. Visualization by proxy:A novel framework for deferred interaction with volume data. IEEE Transactions on Visualization and Computer Graphics, 16(6):1551-1559, 2010. https://doi.org/10.1109/TVCG.2010.215
  12. M.Schott, V.Pegoraro, C.Hansen, K.Boulanger, and K. Bouatouch, A directional occlusion shading model for interactive direct volume rendering. Computer Graphics Forum (Proceeding of Eurographics/IEEE VGTC Symposium on Visualization 2009), 28(3):855-862, 2009.
  13. V.Solteszova, D.Patel, S.Bruckner, and I.Viola. A multidirectional occlusion shading model for direct volume rendering. Computer Graphics Forum, 29(3):883-891, June 2010. https://doi.org/10.1111/j.1467-8659.2009.01695.x
  14. L. Bavoil and M. Sainz. Screen space ambient occlusion. Technical report, NVIDIA Corporation, 2008.
  15. T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dynamic global illumination in image space. Proceedings of the 2009 symposium on Interactive 3D graphics and games, I3D '09, pages 75-82, 2009.
  16. M.Hadwiger, C.Sigg, H.Scharsach, K.Buhler, and M.H.Gross. Real-time ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum, 24(3):303-312, 2005. https://doi.org/10.1111/j.1467-8659.2005.00855.x