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A Data Structure for Real-time Volume Ray Casting
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Abstract
Several optimization techniques have been proposed for volume ray casting, but these cannot achieve real-time frame
rates. In addition, it is difficult to apply them to some applications that require perspective projection. Recently,
hardware-based methods using 3D texture mapping are being used for real-time volume rendering. Although rendering
speed approaches real time, the larger volumes require more swapping of volume bricks for the limited texture memory.
Also, image quality deteriorates compared with that of conventional volume ray casting. In this paper, we propose a data
structure for real-time volume ray casting named PERM (Precomputed dEnsity and gRadient Map). The PERM stores
interpolated density and gradient vector for quantized cells. Since the information requiring time-consuming
computations is stored in the PERM, our method can ensure interactive frame rates on a consumer PC platform. Our

method normally produces high-quality images because it is based on conventional volume ray casting.

1. Introduction

Direct volume rendering produces a projected image directly from
volumetric data without intermediate representation. Volume ray
casting is a well-known volume rendering method [1]. Although it
produces high quality images, the rendering speed is too slow because
of several time-consuming computations. To avoid these calculations,
we propose a data structure, named PERM, for real-time volume ray
casting. After determining candidate cells, each cell is quantized into
the number of N, defined by the user. N, is the quantized basis.
Figure 1 shows the structure of single candidate cell. A candidate cell
contains the N,[f quantized cells. We calculate the density and the
gradient vector per quantized cell in preprocessing time. In rendering
stage, the color value can be acquired without time-consuming
computation since most of the data required for volume ray casting are

stored in the PERM. As a result, the PERM can reduce rendering time.
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Figure I: Structure of quantized cells. A candidate cell is composed of

several quantized cells.

The next section gives a brief description of previous work, and we
contemplate conventional volume ray casting in section 3. In section 4,
we explain the PERM in detail. In the fifth section, we present the
method of reducing the number of candidate cells. The method of
diminishing the memory space is proposed in the sixth section.
Experimental results are shown in scction 7. Finally, we summarize and

conclude our work.



2. Related Work

Several acceleration techniques have been proposed to reduce
rendering time in volume visualization. Yagel and Kaufman proposed
the use of the ray template to accelerate ray traversal [2]. They used a
spatial coherence of the ray trajectory, but it is difficult to apply their
method to perspective projection. The shear-warp method proposed by
Lacroute and Levoy rearranges the voxels in the memory to allow
optimized ray traversal (shearing of the volume data set) [3]. Although
this method can produce images from reasonable volumes at quasi-
interactive frame rates, image quality is sacrificed because bilinear
interpolation as a convolution kernel is used.

Texture mapping is a widely supported technique in 3D graphics
hardware [4, 5]. Cabral et al. popularized texture mapping for volume
visualization [6]. Recently, GPU-based methods have been proposed to
use high-parallel vertex and fragment shading code [7, 8]. Pre-
integrated volume rendering is a technique to improve the quality of 3D
texture mapping [9, 10, 11]. Since much of the necessary computation
is performed in advance, it can generate high-quality images compared
with conventional 3D texture mapping. Although it is available on
recent graphics accelerators, the limited amount of texture memory
restricts the accuracy of the classifications. Therefore, classifications
containing high gradients do not render [11]. Moreover, it cannot
incorporate lighting due to space constraints [10].

Udupa and Odhner proposed a data structure for volume rendering
[12]. Based on a list of nontransparent voxels and a 2D array of
pointers to that list, it achieves fast rendering. However, it has been
restricted to parallel projection. Although it has been extended to
provide a digital perspective, the rendering speed decreases [13].
Sobierarjski and Avila proposed a two-step algorithm, which projects
boundary cells in the image plane using graphics hardware to identify
the relevant parts of the rays [14]. Wan et al. used a projection template
to reduce the computation involved in projecting boundary cells on the
distance buffer [15]. It was more effective for small volumetric data

and only supported parallel projection.

3. Contemplating Volume Ray Casting

Three elements influence rendering speed in volume ray casting. First,
trilinear interpolation is necessary to calculate an accurate density value
at each sample point. Trilinear interpolation is composed of seven
linear interpolations [16]. Since it performs seven multiplications and
fourteen additions, computation time is long.

Second, when the calculated density value is nontransparent, it
evaluates the gradient vector. Neighboring gradient vectors are
estimated to compute the gradient vector for a sample point. There are
several methods of estimating the gradient vector [17]. Generally, all
methods randomly access the memory and take a long time to compute.
A simple way to estimate the gradient vector is to use the central
difference. However, this also takes a long time owing to randomness
in the memory reference pattern.

Third, to calculate an accurate gradient vector on a sample point,
eight gradient vectors are interpolated by trilinear interpolation. Since
the gradient vector is composed of three components (x-, y- and z-axes),
trilinear interpolation is performed three times. Based on the gradient

vector, the color value at each sample point is calculated.
4. PERM

To improve rendering performance of volume ray casting, the
computation speed of the three elements listed in section 3 should be
accelerated. The obvious way is to precompute the values in a
preprocessing step, and to read them in the rendering step. For this

reason, we propose a novel data structure, the PERM.

4.1. PERM

To generate our data structure, we determine candidate cells from the
entire volume. A simple way is to use an opacity transfer function.
Levoy proposed this technique to determine voxel materials in certain
classes of volumes [18]. Let the changing position of the opacity value
from a transparent to a nontransparent region be #, Indices of the
candidate cells generated based on ¢, are stored in the Index Volume
(V). If the density value of the volume dataset is less than ¢, it has a
null value. In equation (1), d(v) is the density of voxel v, and N,.. is the

number of candidate cells.



W = index if div)y>t,
S nu otherwise n

(where Y <index< N, )

Next, we calculate the required values per quantized cell. Three items
are required. The first item is the density value calculated by trilinear
interpolation (D,,), and is stored in the Density Buffer (DB;). The
gradient vector, interpolated from neighboring gradient vectors, is
stored in the Gradient Buffer (GB;). The last item is the sign element
required to represent a negative value of the gradient vector (SIGN).
This value is stored in Sign Buffer (SB)). In equation (2), GX,,;, GV,
and GZ,, represent each axis of the gradient vector.

DB, =D,

m — i

GB,, = GX,

m iri

GB,,,,, =GY,

3m+l i

GB3m+2 =GZ, (2)

Iri

SB,, = SIGN
(where m=1V, x ch} )

In general, the volume dataset is composed of positive (unsigned)
values. If the data type of the gradient vector is the same as that of the
volume dataset, we cannot represent a negative value. The simple
method is to assign twice the size to each axis. However, this becomes
a problem when there are numerous candidate cells. We can solve this
problem by adding a sign field composed of a 1 byte data structure, and
assigns 2 bits for each axis. For example, if the voxel size is 1 byte, a 6-
byte data structure is required (2 bytes per axis). However, when we
add a sign field only 4 bytes are required (the gradient vector is 3 bytes,

and the sign field is 1 byte).

2 bytes 2 bytes 2 bytes

1byte 1byte 1byte 1 byte

Figure 2: When we add SIGN filed, only 4 bytes are required. We

assume that voxel size is | byte.

The memory requirement is denoted by equation (3). Let (p({ds}) be
the function returning the size of the {ds} structure, b{d‘_} the number of
byte(s) to assign {ds}, and S=N, x N x N the total volume size. The
size of the /ndex Volume is equal to that of the volume size since it

stores the indices of the candidate cells.

@(PERM) = o(1V)+@(DB) +p(GB) + ¢(SB)
=S xby + (N x Np* x b))+ (N x N x by, x3)
+(N, x N, xby)
=8 xby+ Ny x Ny x (b +3bgy +b,,)

)

qc

4.2. Mapping to the Nearest Quantized Cell

The practical problem is to derive the mapping function between an
arbitrary sampling point and the nearest quantized cell; when a
fractional position does not exactly match with the position of the
quantized cell, a mapping function is required. Although this is solved
using arithmetic operations, the computation time is increased. To
alleviate unnecessary calculations, we propose a mapping lookup table
(M_LUT). The index of the table is divided into the quantized basis for
M _LUT (QBM) and its return value is the guantized position. This table
is used continuously unless the number of quantized cells changes.
Equation (4) shows the structure of the M _LUT, and figure 3 shows an
example when the OBM is 1000. We assume that N, is 5, and the

sampling position is x,, y,,and z,.

M_LUT [qi, ]{qi,]lqi. ]
=|qi, /t]+if(gi, % t<172)0:1+
Ny x (Lgi, /tJ+if (qi, %t <1/2)0:1)+
Ny x Ny x (L qi, 11|+ if (qi,%1 <1/2) 0:1)
(where qi, =[_QBM x (x —l_xsj )J s
qi, =|0BM x(y, -y, D).

qi: =|_QBM X (Zs - l_ZA\‘J )J’
1=0BMIN,,)

4

4.3. Reducing the Size of Index Volume

When there are numerous candidate cells, we can assign the Index

Volume as four or more bytes. In this case, the total memory is



increased. We use a summed-area table to solve the problem. This table
contains the accumulated number of candidate cells along the z-axis.
The Index Volume stores only the indices of the candidate cells per z-
axis. When we use this method, the memory size decreases to about

half the original Index Volume.

M_LUT[0][0][0] ~ M_LUT{100][0]{0] = 0

M_LUT[101}{0][0]} ~ M_LUT[300][0][0] = I
M_LUT[301][0]{0] ~ M_LUT[500][0][0] = 2
M_LUT[S01][0][0] ~ M_LUT[700][0][0] = 3

M_LUT[0]{100][0] ~ M_LUT[0][300][0] = §

M_LUT[0][301]{0] ~M_LUT[0][S00}[0} = 10
M_LUT[0][0][101] ~ M_LUT[0][0][300] = 25
M_LUT[0][0])[301] ~ M_LUT[0][0][500] = 50

M_LUT[1000x0.48][1000X0.0}{1000X0.25] = 3+5X(0+1X5) =27
{ where x,=100.48, v,=100.0, 2,=100.25 )

Figure 3: An example of M_LUT

For example, if the volume size is 1,000,000 (i.e., N, N,, and N_ are
100 respectively), 100x100x100x 4 bytes of memory are required to
store the /ndex Volume (assuming that the number of quantized cells of
all candidate cells is covered by 4 bytes). However, when we use the
summed-area table, 100x100x100x 2 bytes are required for the fndex
Volume and 100x 4 bytes for the table (assuming that the number of
quantized cells of the candidate cells per slice is less than 2 bytes). To
determine the index of a candidate cell, this method performs one

addition between the result of the /ndex Volume and that of the

summed-area table. Therefore, it scarcely influences computation speed.

4.4, Structure of the PERM

Figure 4 shows an example of indexing the Density Buffer, Gradient
Buffer, and Sign Buffer through the Index Volume. In the preprocessing

step, after generating the /ndex Volume to store the indices of candidate

cells, we determine the Density Buffer, Gradient Buffer, and Sign Buffer.

In the rendering stage, when a ray locates a sample point, it reads the
nearest quantized cell using M_LUT, and reads the /ndex Volume to
index each buffer. Using these two values, it reads the density value,
gradient vector, and sign field. These values are used to determine the

opacity and color value.

5. Reducing the Number of Candidate Cells

When the number of voxels of which the density value is greater than #,
is numerous, a lot of memory is needed. When an accumulated opacity
value becomes 1.0, ray traversal at the pixel is complete. Therefore, if
we can generate the boundaries when the accumulated opacity value
becomes 1.0, we reduce the memory space for storing the PERM.
Although our approach detecting the boundary is similar to [12, 13, 14,
15], the extraction method is different from other methods.

To reduce the number of candidate cells, we consider two properties.
Property (1) occurs when the fully opaque boundary generated in the
previous step encloses the current cell. This means that a ray cannot
come into the current cell since the accumulated opacity has already
become 1.0. We do not consider the current cell even though it is not
fully opaque. Figure 5(a) illustrates a 2D example of this property. The
shaded circle represents an opaque voxel, the empty circle is a
transparent one, and the shaded region depicts the boundary generated
in the previous step. Although cells C; and C, are not fully opaque, the
ray cannot enter C; and C, because the boundary generated in the
previous step ( C._; ~ C; ) enclosing C; and C; is fully opaque.

Even if property (1) is not satisfied, the accumulated opacity
becomes 1.0 when translucent cells continuously occur (figure 5(b)).
Rendering at each pixel can be terminated even when a fully opaque
cell does not exist. This is property (2). To prevent excess generation,
we define the iterative threshold ¢,. When 7>¢, in the #-th boundary,
the generation process is complete.

Using these properties, we can reduce the number of candidate cells.
First, we peel the volume until an outermost (innermost) boundary
remains. Next, we perform morphological thickening or thinning. If the

current voxel satisfies property (1), the cell is skipped.
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Figure 4: The data structure of the PERM. It is composed of Index Volume, Density Buffer, Gradient Buffer. and Sign Buffer.

fully opaque boundary

current voxel
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Figure 5: Since C; and C, are enclosed by the fully opaque boundary

generated in the previous step (from Ci_;to C,), a ray cannot come into
C, and C,. Accumulated opacity can become 1.0 when a translucent

cell is repeated continuously.

The generated boundary can satisfy the closure condition. If the current
voxel cannot fulfill the property, a ray might penetrate the boundary.
These steps repeat until the property (2) is satisfied. Figure 6 shows an
example to reduce the number of candidate cells. The total memory can

obviously be reduced by using this method.

2D

original volume datasct

'

candidate cells outermost boundary

Figure 6: An example of reducing the number of candidate cells. The

morphological thinning is performed from the outermost boundary.

Although this method can reduce the memory space, it can produce
different results. If a cavity exists inside the object and the viewpoint

locates inside, we perform morphological thickening from the



innermost boundary. Otherwise, when we observe the object from
outside, we execute morphological thinning. Therefore, we should
make two boundarics when a cavity exists. After generating the

boundaries, we merge them. Figure 7 depicts these situations.

morphological thickening
from innermost boundary

morphological thinning
from outermost boundary

mergence
Figure 7: When the object has cavity regions, morphological thickening
is performed from the innermost boundary and thinning from the

outermost boundary. After generating these boundaries, we might

merge them,

6. Unequal Quantization

Although our method accelerates rendering speed, much space is
required to store the data structure. We propose a method applying
unequal quantization for the density and gradient vector to solve this
problem. That is, we set N, for the density and that for the gradient
vector to be unequal.

There are two methods. The first sets the number of quantized cells

for density ( D_N,_.) to be large compared with that for the gradient

qc

vector ( G_N_. ). This method does not deteriorate image quality

qc
because the discrepancy between the original sample point and the
point taken by M LUT is trivial. Of course, the lighting effect
deteriorates since the number of quantized cells for the gradient vector
is insufficient. On the other hand, if the number of quantized cells for
the gradient vector is set to be large, image deterioration may occur
because of the discrepancy between them. In addition, since calculation
of the gradient vector is only possible by estimation, the former case
shows an accurate result compared with the latter case.

When we use the PERM using unequal quantization, equation (2)
transforms into equation (5). The /ndex Volume is identical. Equation

(6) shows the memory requirement when we use the unequal

quantization based method.

DB, =D

i

GB}m = GXW’
GB}mH = Geri
- (5)
GB3m+2 - GZIri
SB, = SIGN

(where |=1V,x(D_N, ), m=1V,x(G_N,)")

qc
@(PERM) = o(1V)+@(DB) +o(GB)+¢(SB)
=Sxby +(No x(D_N,.) xby)+ (6)
(N X(G_N Y xbgy x3)+(N,. x(G_N,.) xby)

7. Experimental Results

All of the methods were implemented on a PC equipped with a single
Pentium 1V 3.06 GHz CPU and 1 GB main memory. The first dataset
was a CT scan of a Boston teapot with a resolution of 256x256x178,
the second dataset was a CT scan of a bonsai with a resolution of 256 .
The third dataset was an aneurysm of a human brain vessel with a
resolution of 256° , and the final dataset was a human tooth with a
micro CT with a resolution of 256x256x161.

Table 1 shows the preprocessing time and required memory for

is 5. The time was about 30 seconds and

different datasets when N,
required memory was 505 MB to store the PERM in the worst case.
When we use the unequal quantization based method, even in the worst
case, the time was 13 seconds with a required memory of 209 MB.

The rendering time to produce the final image when the images are
projected to a perspective view is shown in figure 8, and for a parallel
projection is shown in figure 9. All the results are for the mean
computation time and include the space-leaping time. Each dataset
provides the result when the image size is 128 x 128, 256 X 256, and
512 x 512, respectively. The rendering speed of our method is at least
200% faster than that of the conventional distance-map method. We use
the Euclidean distance-map method as a space-leaping method [19].
Total rendering time is also at least 200% faster than the conventional
method for parallel projection. However, total rendering speed is slow
compared with the perspective method because advance from image
space to volume space is required. In perspective projection, it is not
necessary to skip over those regions since the center of projection is

generally located inside the volume space.



Table 1: Preprocessing time and required memory to generate the PERM for different datasets. N, is 5.

candidate cell quantized cell enrocessing time reauired |
dataset N (voxels) detect time generation prep sing qui
(secs) time (secs) (secs) memory (MB)
teapot 601,190 0.77 19.78 20.55 399
bonsai 754,117 0.84 29.02 29.86 505
aneurism 214,521 0.44 7.14 7.58 168
tooth 304,322 0.53 10.01 10.54 211

Table 2: Preprocessing time and required memory when using unequal quantization based method (D_N,. =5, G_N,,

candidate cell quantized cell . ssine tim reauired
dataset N, (voxels) detect time generation preprocessing time qu
(secs) time (secs) (secs) memory (MB)
teapot 601,190 0.77 8.37 9.14 163
bonsai 754,117 0.84 11.82 12.66 209
aneurism 214,521 0.44 3.06 3.50 84
tooth 304,322 0.53 4.33 4.86 92

3).

B 256x256
[1512x512

aneurism tooth

bonsai

teapot
Figure 8: Performance of our approach for different datasets. We use
Euclidean distance-map as a space-leaping method. All results are

rendered to a perspective projection.
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Figure 9: Performance of our approach when the results are projected to

a parallel view.

Figure 10 shows the image quality without change of viewpoint and
viewing direction. The images in figure 10(a) are the result generated
using the conventional volume ray casting method. Images in figures
10(b), (c), and (f) are results generated by our algorithm when N . is
10, 5, and 3 respectively. We can see visual artifacts according to the -
decrease in N, . The images when D_N,, is 3 and G_N, is5are
depicted in figure 10(d). Figure {0(e) shows the results when D_ N,
is5and G_N, is 3. Visual artifacts exist when D_ N, is lower than
G_Ng .
Figure 11 shows the rendering images for different datasets projected

to a parallel view and a perspective view when D_N, . is 5 and

G _ N, is 3. Image size is 256x256 pixels.

ge

8. Conclusion

The most important issue in volume visualization is to produce high
quality images in real time. We propose the volume ray casting method
to reduce rendering time compared with conventional methods in any
situation. Using the PERM, we can render in real-time on a consumer
PC platform without time-consuming calculations such as trilinear
interpolation and gradient estimation. The rendering speed of our
method does not affect volume size, although that of proposed methods
such as 3D texture mapping is dependent on volume datasets. Our
experimental results show that the method normally produces high-
quality images and requires less rendering time. Future work will be

focused on reducing memory space and preprocessing time.
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Figure 11: Comparison of image quality: (a) conventional volume ray casting (b) N, =10 (¢) N, =5 (d) D_N, =3, G_N, =5 (¢)

D _N,=5,G_N,=3(f) N, =3.The dataset of the bonsai is at the first and second row, and that of the tooth is at the third and fourth row.

qc



Figure 12: Rendering results in different areas: Images of the first and second column are obtained with parallel projection. Images of the third and

fourth column are projected to perspective view.



