• Title/Summary/Keyword: voltage compensation

Search Result 1,122, Processing Time 0.026 seconds

Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters (두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR))

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.

Active/Reactive Compound Compensation in Distribution System

  • Sul, Yong-Tae
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 1997
  • In this paper th use of compensation based on a combination of active plus reactive power at distribution model system is proposed. The basic voltage-power relationships for the linearized case on an infinite bus are used and the compensation angle is defined based on the voltage magnitude response to small power injection. Compensation is supplied at several locations, and the system is subjected to varying fault scenarios, with its response observed under different system conditions. As number of control issues for a storage-based active/reactive power compensator as a bus voltage regulator are explored to compare the effectiveness of active/reactive again reactive-only compensation.

  • PDF

Improved Performance of SVPWM Inverter Based on Novel Dead Time and Voltage Drop Compensation (새로운 데드타임 및 전압강하의 보상을 이용한 SVPWM 인버터의 성능개선)

  • Lee, Dong-Hui;Gwon, Yeong-An
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.618-625
    • /
    • 2000
  • Recently PWM inverters are widely utilized for many industrial applications e.g. high performance motor drive and PWM techniques are newly developed for an accurate output voltage. Among them space voltage vector PWM(SVPWM) inverter has high voltage ratio and low harmonics compared to the conventional sinusoidal PWM inverter. However output voltage of PWM inverter is distorted and has error duet o the conducting voltage drop of switching devices and the dead time that is inevitable to prevent the shoot-through phenomenon. This paper investigates 3-phase SVPWM inverter which has a new compensation method against dead time and voltage drop. Proposed algorithm calculates gate pulse periods which directly compensates the dead time and nonlinear voltage drop without modification of reference voltages. Direct compensation of gate pulse periods produces exact output voltage and does not need additional circuits. The propose algorithm is verified through the simulation and experiments.

  • PDF

Design of DC Side Voltage and Compensation Analysis of THD for Shunt Power Quality Controller under System Load of Rectifier with R-L Load

  • Zhao, Guopeng;Han, Minxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2015
  • For a shunt power quality controller (SPQC) the DC side voltage value which is closely related to the compensation performance is a significant parameter. Buy so far, very little discussion has been conducted on this in a quantitative manner by previous publications. In this paper, a method to design the DC side voltage of SPQC is presented according to the compensation performance in the single-phase system and the three-phase system respectively. First, for the reactive current and the harmonic current compensation, a required minimal value of the DC side voltage with a zero total harmonic distortion (THD) of the source current and a unit power factor is obtained for a typical load, through the equivalent circuit analysis and the Fourier Transform analytical expressions. Second, when the DC side voltage of SPQC is lower than the above-obtained minimal value, the quantitative relationship between the DC side voltage and the THD after compensation is also elaborated using the curve diagram. Hardware experimental results verify the design method.

Compensation Algorithm for a Measurement Voltage Transformer (측정용 전압 변성기 오차 보상 알고리즘)

  • Kang, Yong-Cheol;Park, Jang-Min;Lee, Mi-Sun;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

Development of On-Line Type Voltage Sag Compensation Systems by Using a Supercapacitor (수퍼커패시터를 이용한 상시가동형 순시전압강하 보상시스템의 개발)

  • Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • This paper deal with development of on-line type voltage sag compensation system using supercapacitor EDLC to solve the voltage sag problems which are considered to be dominant disturbances affecting the power quality. With the wide use of semiconductor devices in electrical equipment, modem-type loads are becoming increasingly sensitive to the voltage sags and the disturbances prove to be costly to industries. Supercapacitor EDLC is employed to compensate dynamically for the voltage sag of system with sensitive loads. This capacitor has higher energy density than the electrolytic capacitor. Also, this capacitor has a lot of advantage such as no maintenance, longer life cycle and faster charge-discharge time than the battery system. Therefore, in this paper, the energy design scheme of supercapacitor and the configuration technique of on-line type voltage sag compensation systems are newly introduced. According to the results of experimental of prototype 5[kVA] system, it is verified that the developed system has effectiveness of voltage sag compensation by using a supercapacitor EDLC.

Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System

  • Choi, YunHyuk;Lee, Byongjun;Kim, TaeKyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1502-1507
    • /
    • 2015
  • This paper deals with shunt compensation to eliminate voltage violation and enhance transfer capability, which is motivated towards implementation in the Korean power system. The optimal shunt compensation algorithm has demonstrated its effectiveness in terms of voltage accuracy and reducing the number of actions of reactive power compensating devices. The main shunt compensation devices are capacitor and reactor. Effects of control devices are evaluated by cost computations. The control objective at present is to keep the voltage profile of a key bus within constraints with minimum switching cost. A robust control strategy is proposed to make the control feasible and optimal for a set of power-flow cases that may occurs important event from system. Case studies with metropolitan area of the Korean power system are presented to illustrate the method.

The Susceptance Control of a STATCOM for Load Compensation and Voltage Regulation (부하보상 및 전압안정을 위한 STATCOM의 서셉턴스 제어)

  • Lim, Su-Saeng;Lee, Eun-Woong;Lim, Yong-Bin;Kim, Hong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.21-23
    • /
    • 1999
  • The alternative precise method for voltage balancing and load compensation using the susceptances control of a STATCOM is discussed. With the control of STATCOM's output current, it is confirmed that the compensation susceptances can be variable. And then the STATCOM's control method about compensation susceptances for load compensation and voltage balancing/regulation is derived. Finally, the effectiveness of load compensation and voltage balancing/regulation is confirmed through computer simulation.

  • PDF

Design of a Series Voltage Sag Compensation System in Transmission Line

  • Park, Hyen-Young;Kim, Yang-Mo;Lee, Gyo-Sung;Oh, Se-Ho;Park, Jung-Gyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.191-200
    • /
    • 2002
  • When power consumption increases, power supply must be efficient and reliable for good power quality. The studies on compensation system of power quality are processing actively. Voltage sag among of factors for power quality is generally PI dual control that voltage sag compensation is used. But this control is no more available since of 120[KHz] ripple rejection. So we proposed the control algorithm using PID control in 3-phase unbalanced power system and the series voltage compensator, when voltage sag occurs.

A Voltage Compensation Method to Improve the Control Performance for B4 Inverters (B4 인버터의 제어성능 향상을 위한 전압보상 기법)

  • 오재윤
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.317-320
    • /
    • 2000
  • This paper proposes a voltage compensation method to improve the control performance of B4 inverter which is studied for low-cost drive systems. The B4 inverter employs only four switches and it has a center-tapped connection in the split dc-link capacitors to one phase of a three-phase motor. In the B4 topology unbalan-cd three-phase voltages will be generated by the dc link voltage ripple. To solve this problem we present a voltage compensation method which adjusts switching times considering dc link voltage ripple. The proposed method is verified by simulation results,

  • PDF