• Title/Summary/Keyword: voltage capacity

Search Result 978, Processing Time 0.026 seconds

Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors (대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구)

  • Jung, Won-Wook;Shin, Dong-Yeol;Lee, Hak-Ju;Yoon, Gi-Gab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.748-757
    • /
    • 2007
  • This paper is intended to solve the technical problem that fails in large-capacity induction motor starting due to serious voltage drop during starting period. One induction motor that is established already can reach in steady-state using reactor starting method but the voltage magnitude of PCC (point of common coupling) has dropped down a little. When the same capacity induction motor is installed additionally in the PCC, where the existing induction motor is operating, voltage drop becomes more serious by starting of additional induction motor. As a result, the additional induction motor fails in starting. Therefore, voltage compensation method is proposed so that all of two induction motors can be started completely. First, modeling technique is described in order to implement starting characteristics of large induction motor. And then, this paper proposes strategic starting scheme by proper voltage compensation that use no-load transformer tap control (NLTC) and step voltage regulator (SVR) for starting of two large induction motors successfully and improving the feeding network voltage profile during the starting period. The induction motor discussed in this paper is the pumped induction motor of 2500kVA capacity that is operating by KOWACO (Korea Water Resources Corporation). Modeling and simulation is conducted using PSCAD/EMTDC software.

  • PDF

Increasing Hosting Capacity of Distribution Feeders by Analysis of Generation and Consumption (배전선로 부하량 및 발전량 분석을 통한 신재생 접속허용용량 기준 상향에 대한 연구)

  • Kim, Seong-Man
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.295-309
    • /
    • 2019
  • This paper demonstrates that the verification and analysis of the increase of hosting capacity of distributed energy resources in distribution system for the high penetration of distributed energy resources. In the case of generally designed distribution feeders in South Korea, it can host up to 10 MVA of distributed energy resources and the over voltage due to reverse power flow is prohibited beyond the range by the law of electric utility. However, it should take into consideration that there are some factors of extra hosting capacity such as generation characteristics of distributed energy resources and minimum loads that always exist to distribution system. For these reason, we choose a specific distribution system hosted 10 MVA of distributed energy resources monitored by distribution system operator and verify the impact of increasing hosting capacity such as power flow and voltage profile of distribution system. By the result, we could find that it is possible to increase the hosting capacity and define the factors to expand the hosting capacity of distributed energy resources in distribution system.

Study on Emergency Generator Capacity Selection(PG3) in the Chemical Plant (화학 플랜트에서의 비상발전기 용량선정 방안(PG3)에 관한 연구)

  • Lee, Seung-Jae;Jo, Man-Young;Kim, Se-Yong;Kim, Eun-Tae;Kang, Byoung-Wook;Park, Han-Min;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.55-60
    • /
    • 2015
  • PG and RG methods are widely known method for calculating the capacity of the emergency generator in construction electrical installation. PG and RG methods are mainly used as a saving a life, fire protection, fire fighting in construction. Because no long distance between the emergency generator and electric motor feeder, the relatively small motor power in construction electrical installation, the capacity of generator in PG and RG methods are little problem of voltage and reactive power of generator. However in many cases the application of the PG and RG method is difficult in the Chemical Plant because it is long distance between the generator and the motor Feeder and motor capacity is very large. Motor starting power factor is about 0.2 lagging power factor and motor starting current is about 6times during motor staring. Also Most of the staring current component is a reactive power component. therefore, it is many cases that lack of reactive power and excess of allowable voltage drop limit and After selection of emergency diesel generator, problems happen during motor starting. Therefore, to be selection of effective emergency generator, active generator power, reactive power and the required reactive power during large motor starting should be considered in chemical plant. It is also required of the verification process through simulation because hand calculation is very difficult considering study cases.

An Integrated Compensation Algorithm for PCC Voltage Fluctuation and Unbalance with Variable Limit of Positive and Negative Sequence Currents

  • Im, Ji-Hoon;Song, Seung-Ho;Cho, Sung-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.751-760
    • /
    • 2017
  • This paper proposes a point of common coupling (PCC) voltage compensation algorithm using a current limitation strategy for use in distributed generation (DG). The proposed strategy maintains the PCC voltage by prioritizing currents when an output current reference is larger than the current capacity of the power condition system (PCS) of the DG. With this strategy, the DG outputs the active current, reactive current, and the negative sequence current. The DG uses the reactive current for maintaining the PCC voltage within a normal range; the negative sequence current is used for reducing the PCC voltage unbalance. The proposed method was verified using PSIM simulation and experimental results.

A STUDY ON OPTIMAL UPGRADING VOLTAGE OF EHV GRID NETWORK-LYBIAN CASE (초고압 송전선로의 최적 격상전압 선정에 관한 연구-리비아국 사례)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1041-1043
    • /
    • 1997
  • When a new transmission line is planned to construct, the system voltage and the conductor size of the transmission line should be decided by both economical and technical point of view. This paper presents a methodology to determine the optimal voltage for upgrading the transmission system voltage of existing the extra high voltage grid network by meeting the requirements of the transmission cost minimization as well as technical constraints of thermal limit and stability limit in the transmission line. As a case study, calculated are optimal voltages versus distance and capacity of a practically applicable transmission line with 4 bundles 2 circuits. By this study 400kV was selected as the next higher voltage for the existing 220kV Libyan grid network.

  • PDF

LIGBT with Dual Cathode for Improving Breakdown Characteristics

  • Kang, Ey-Gook;Moon, Seung-Hyun;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.16-19
    • /
    • 2000
  • Power transistors to be used in Power Integrated Circuits(PIC) are required to have low on resistance, fast switching speed, and high breakdown voltage. The lateral IGBTs(LIGBTs)are promising power devices for high voltage PIC applications, because of its superior device characteristics. In this paper, dual cathode LIGBT(DCIGBT) for high voltage is presented. We have verified the effectiveness of high blocking voltage in the new device by using two dimensional devices simulator. We have analyzed the forward blocking characteristics , the latch up performance and turn off characteristics of the proposed structure. Specially, we have focused forward blocking of LIGBT. The forward blocking voltage of conventional LIGBT and the proposed LIGBT are 120V and 165V, respectively. . The forward blocking characteristics of the proposed LIGBT is better than that of the conventional LIGBT. This forward blocking comparison exhibits a 1.5 times improvement in the proposed LIGBT.

  • PDF

A Study on the Characteristics of Voltage Distribution of Stacked YBCO Coated Conductors in Series Connection

  • Chu, Sung-Yul;Hwang, Young-Jin;Kim, Young-Jae;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.25-28
    • /
    • 2009
  • In order to apply superconducting electric machineries such as a Superconducting Fault Current Limiter (SFCL) to the power grid, the single module should be connected in series to have reasonable size. Superconducting tapes in the module also should be stacked to satisfy requirements such as large operation current of the power grid. This is because a single superconducting tape has restricted applicable current capacity. Moreover especially in SFCL at the fault, there should be equal voltage distribution in series-connected SFCL modules. In this paper, we investigated the voltage distribution in fault current of series-connected YBCO coated conductors (CC). Depending on characteristics of the CC samples such as critical current, even voltage distribution could be achieved or not. In addition, the effect of stacked CC on the change of voltage distribution comparing to non-stack cases in series connection was confirmed by experiments. As the CC stacked, voltage difference could be reduced.

Voltage Balancing Circuit for Li-ion Battery System (리튬-이온 배터리 시스템을 위한 전압안정화 회로)

  • Park, Kyung Hwa;Yi, Kang Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.73-80
    • /
    • 2013
  • Recently, Li-ion battery is regarded as a potential energy storage device in the lime light and it can supply power to the satellite very effectively during eclipse. Because it has better features as high voltage range, large capacity and small volume than any other battery. Generally, multi cells are connected in series to use Li-ion batteries in satellite application. Since the internal resistance of cells is different each other, voltage in some cells can be overcharged or undercharged, so capacity of the cell is reduced and the life of whole battery pack is decreased. Therefore, a voltage balancing circuit with Fly-back converter is proposed and the voltage equalization of each cell is verified the prototype in this paper.

A Study on the Performance of Recycled Cells for application to Residential BESS (주택용 BESS에 적용하기 위한 재활용 셀의 성능에 관한 연구)

  • Phil-Jung Kim;Seong-Soo Yang
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • To determine the performance of recycled cells for application to residential BESS, cells used over the past 5 years were selected. The basic specifications of the cell used in the test are nominal voltage of 3.7[V], nominal capacity of 2,200[mAh], charging voltage of 4.05[V], continuous discharge current of 1[C](2,200[mA]), continuous charging current of 0.5[C](1,100[mA]). For new cells, the internal resistance was 21.3±1[mΩ], but for recycled cells, the average internal resistance was 25.38[mΩ], an increase of about 19.1[%]. The charge·discharge capacity was approximately 18.9~19.3[%] lower than that of a new cell. Because internal resistance and charge·discharge capacity are closely related to cell aging, cells to be applied to BESS need to use products with an initial internal resistance of 1.5 times or less and a charge·discharge capacity performance of 70[%] or more.

Rectifier Design Using Distributed Greinacher Voltage Multiplier for High Frequency Wireless Power Transmission

  • Park, Joonwoo;Kim, Youngsub;Yoon, Young Joong;So, Joonho;Shin, Jinwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • This paper discusses the design of a high frequency Greinacher voltage multiplier as rectifier; it has a greater conversion efficiency and higher output direct current (DC) voltage at high power compared to a simple halfwave rectifier. Multiple diodes in the Greinacher voltage multiplier with distributed circuits consume excited power to the rectifier equally, thereby increasing the overall power capacity of the rectifier system. The proposed rectifiers are a Greinacher voltage doubler and a Greinacher voltage quadrupler, which consist of only diodes and distributed circuits for high frequency applications. For each rectifier, the RF-to-DC conversion efficiency and output DC voltage for each input power and load resistance are analyzed for the maximum conversion efficiency. The input power with maximum conversion efficiency of the designed Greinacher voltage doubler and quadrupler is 3 and 7 dB higher, respectively;than that of the halfwave rectifier.