주택용 BESS에 적용하기 위한 재활용 셀의 성능에 관한 연구

A Study on the Performance of Recycled Cells for application to Residential BESS

김 필 중^{*}, 양 성 수^{*★}

Phil-Jung Kim^{*}, Seong-Soo Yang^{**}

Abstract

To determine the performance of recycled cells for application to residential BESS, cells used over the past 5 years were selected. The basic specifications of the cell used in the test are nominal voltage of 3.7[V], nominal capacity of 2,200[mAh], charging voltage of 4.05[V], continuous discharge current of 1[C](2,200[mAl]), continuous charging current of 0.5[C](1,100[mAl]). For new cells, the internal resistance was $21.3\pm1[m\Omega]$, but for recycled cells, the average internal resistance was $25.38[m\Omega]$, an increase of about 19.1[%]. The charge \cdot discharge capacity was approximately $18.9\sim19.3[\%]$ lower than that of a new cell. Because internal resistance and charge \cdot discharge capacity are closely related to cell aging, cells to be applied to BESS need to use products with an initial internal resistance of 1.5 times or less and a charge \cdot discharge capacity performance of 70[%] or more.

요 약

주택용 BESS에 적용하기 위한 재활용 셀 성능을 파악하기 위해 지난 5년 동안 사용한 셀을 선택하였다. 시험에 사용된 셀의 기본 사양은 공칭 전압이 3.7[V], 공칭 용량이 2,200[mAh], 충전 전압이 4.05[V], 연속방전전류가 1[C](2,200[mAl), 연속충전전류가 0.5[C](1,100[mA]) 이다. 새 셀의 경우 내부저항은 21.3±1[mû]인데, 재활용 셀의 경우 평균 내부저항이 25.38[mû]로 나타나 약 19.1[%] 상승하였다. 충·방전 용량은 새 셀에 비해 약 18.9~19.3[%] 정도 낮게 나타났다. 내부저항과 충·방전 용량이 셀의 노화 에 상호 밀접하게 연관되어 있으므로 BESS에 적용할 셀은 초기 내부저항보다 1.5배 이하이고 70[%] 이상의 충·방전 용량 성능을 갖는 제품을 사용할 필요가 있다.

Key words : BESS, Recycled cell, Internal Resistance, Charge capacity, Discharge capacity

I. 서론

최근 태양광 에너지를 계통이나 배터리(Battery)와 같 은 에너지원에 전달하거나 부하에 전달하는 기술의 중요성 이 커지고 있다[1]. 그리고 예비전력이나 잉여분의 태양광 에너지를 저장하기 위한 ESS(Energy Storage System)의 중요성이 대두됨에 따라 이에 관한 연구가 활발히 진행 되고 있다[1].

^{*} Professor, Dept. of Electronics, Chosun College of Science & Technology

 $[\]star$ Corresponding author

E-mail:ssyang@cst.ac.kr, Tel:+82-62-230-8834

[※] Acknowledgment

Manuscript received Feb. 19, 2024; revised Mar. 4, 2024; accepted Mar. 7, 2024.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

배터리의 에너지를 충 · 방전하여 전력 사용 효율성을 향상시키는 BESS(Battery Energy Storage System) 기 술이 적용되고 있는데, BESS는 상대적으로 전력 요금이 저렴한 심야에 배터리에 전기에너지를 충전했다가 전력 요금이 상대적으로 비싼 주간에 배터리의 에너지를 계통 이나 부하에 방전하여 전력공급의 유연성을 확보해 줄 수 있다. 이는 사용자 관점에서 유연한 전력 사용을 할 수 있고 공급자 관점에서도 수요에 따른 공급의 신뢰성 을 높일 수 있어 에너지 발전과 공급 계획을 효과적으로 할 수 있다[1].

주택용 ESS 또는 BESS는 비교적 설치비가 고가이므로 전기차나 태양광 발전에 사용되었던 배터리를 재활용함 으로써 설치비용을 절감할 수 있고 폐배터리로 인한 환경 오염을 줄여 주거나 폐기물 처리비용을 절감할 수 있다.

본 연구에서는 주택용 BESS에 재사용할 수 있는 배터 리의 성능 평가를 통해 적용할 수 있는 재활용 배터리 셀(Cell)의 기준 요건을 제안하고자 한다. 이를 위해 재 활용 셀의 충전과 방전 성능 시험, 내부저항 시험, 노화 정도를 분석하였다.

||. 본론

1. 주택용 BESS와 주변 시스템

그림 1은 주택용 BESS와 주변 시스템 구성도이다. PV(Photovoltaic)는 금속과 반도체 접촉면 또는 반도체 에 빛을 비추면 발생하는 광전효과를 이용한 태양광 발 전이다.

Fig. 1. Residential BESS and surrounding systems. 그림 1. 주택용 BESS와 주변 시스템

DC-DC 컨버터(Converter)는 직류 250~310[V] 범 위의 입력전압으로 DC-Link에 직류 380[V] 전압으로 변환하여 전달한다. 인버터(Inverter)는 직류 전압을 교 류 전압으로 변화하여 교류 계통(AC Grid)에 송출하거 나 부하(Load)에 220[V]의 교류 전압을 공급한다. BESS는 재활용 리튬이온 배터리를 팩(Pack)화하여 주 구성요소로 하였다.

2. 재활용 배터리 성능 평가

가. 내부저항 해석

배터리의 전압과 전류 패턴은 방전, 휴지, 충전 순으로 이루어진다. 그림 2에서와 같이 전류 펄스 인가 전후 전 압을 측정한 값을 바탕으로 식 (1)과 같이 내부저항을 표 현할 수 있다[2].

- Fig. 2. Charge and discharge patterns of voltage and current.
- 그림 2. 전압과 전류의 충·방전 패턴[2]

$$R_i \approx R_o + R_d + R_d \simeq \frac{\Delta V}{\Delta I} \tag{1}$$

여기서 Ri는 배터리의 내부저항이고, Ro는 옴저항으 로 분리막, 전해액 등에서 발생하는 저항 성분의 합으로 써 열화에 대한 지표로 사용한다. Rct는 전하 전달 저항 으로 전극과 전해액 계면의 리튬 이온 이동을 나타낸다. Rd는 확산저항으로 내부 농도 차에 의해 발생한다[2].

식 (1)에서 Ro는 식 (2)와 같이 펄스 시작에서 측정된 전압 변화를 전류 펄스 진폭으로 나눈 값으로 표현하고, Rct와 Rd의 합은 식 (3)과 같이 전류 펄스폭 시간(*d*tp) 동안 측정된 전압 변화를 전류 펄스 진폭으로 나눈 값으 로 표현할 수 있다[2].

$$R_o = \frac{\Delta V_o}{\Delta I_p} \tag{2}$$

$$R_{ct} + R_d = \frac{\Delta V_1}{\Delta I_p} \tag{3}$$

나. 시험 조건

시험에 사용된 재활용 셀은 삼성 SDI사의 INR18650 모델로서, 기본 사양은 표 1과 같이 공칭 전압이 3.7[V], 공칭 용량이 2,200[mAh](0.2[C], 2.50[V] 방전), 충전 전압이 4.05[V], 방전 차단 전압이 2.5[V], 연속방전전류 가 1[C](2,200[mA]), 연속충전전류가 0.5[C](1,100[mA]) 이다.

Table 1. Cell	specifications.
---------------	-----------------

Mode	INR18650
Nominal voltage	3.7[V]
Nominal capacity	2,200[mAh](0.2[C], 2.50[V] discharge)
Charging voltage	4.05[V]
Discharge Cut-off Voltage	2.5[V]
Continuous discharge current	1[C](2,200[mA])
Continuous charge current	0.5[C](1,100[mA])

(1) 충전 성능 시험

먼저 방전전류를 0.33[C-ratel로 방전 하한 전압 2.5 [V]까지 방전한 후 약 30분간 안정시킨다. 그런 다음 충 전 전압 4.05[V]와 충전전류 0.33[C]로 설정하여 CC-CV(Constant Current-Constant Voltage) 방식으로 충전하고 0.025[C]에서 중지한다[3]. 이러한 과정을 충 전전류 0.5[C]와 1[C]로 각각 시험 조건을 변경 설정하 여 반복 시험한다.

여기서 C-rate(Current rate)는 배터리 최대 용량 기 준, 충전 또는 방전이 진행될 때 움직이는 전류량의 비율 이며, CC는 일정한 전류량을 유지하도록 전압원의 전위 차를 조정하는 방식 방식이고 CV는 지정한 전압을 계속 유지하도록 전류가 전위차에 맞게 변하는 방식이다.

(2) 방전 성능 시험

먼저 충전 전압 4.05[V], 충전전류 0.33[C]로 CC-CV 충전하고 0.025[C]에서 중지한 후 약 30분간 안정시킨 다. 그런 다음 방전전류를 0.33[C-rate]로 방전 하한 전압 2.5[V]까지 방전한다. 이러한 과정을 방전전류 0.5[C]와 1[C]로 각각 시험 조건을 변경 설정하여 반복 시험한다.

(3) SOC에 따른 OCV 분석 시험

먼저 1[C-rate]의 전류로 배터리 용량을 확인하고 충 전 전압 4.05[V], 충전전류 0.5[C]로 CC-CV 충전하고 0.025[C]에서 중지한 후 약 120분간 안정시킨다. 그런 다음 약 6분간 0.5[C]로 CC 방전하고 방전용량 5[%]에 서 중지한 후 약 15분간 안정시킨 다음 OCV(Open Circuit Voltage)를 측정한다. 이러한 과정을 2.5[V]가 될 때까지 반복 시험한다.

여기서 OCV는 개방 회로 전압으로 배터리의 무부하 상태에서의 전압으로 간주할 수 있고, SOC(State Of Charge)는 배터리의 잔존 용량으로 SOC가 높아지면 OCV는 증가하고 SOC가 낮아지면 OCV는 감소하는 특 성이 있다[3].

(4) 자가 방전 시험

새 배터리와 재활용 배터리의 초깃값을 측정한 후 약 3개월 동안 자연 방치한 상태에서 OCV와 내부저항을 각각 측정하여 그 변화 값을 상호 비교한다.

다. 시험 결과

재활용 셀 시료는 약 5년간 사용된 것으로 각각 10개 씩을 대상으로 실험하였다.

(1) 충·방전 용량과 내부저항

충전 및 방전 성능 시험에서 셀의 내부저항과 충·방 전 용량은 표 2와 같이 나타났다. C-rate별 충전 용량 시험 결과 용량 편차는 0.33[C]에서 31.2[mAh], 0.5[C] 에서 25.7[mAh], 1.0[C]에서 26.5[mAh]로 나타났다. C-rate별 방전용량 시험 결과 용량 편차는 0.33[C]에서 25.1[mAh], 0.5[C]에서 25.5[mAh], 1.0[C]에서 24.7 [mAh]로 나타났다.

Table	2.	Charge \cdot discharge capacities and internal resistance.
표	2.	충·방전 용량과 내부저항

	C-rate	Min	Max	Avg	Gap
Charge capacity [mAh]	0.33C	1,821.6	1,852.8	1,837.2	31.2
	0.5C	1,825.8	1,851.5	1,838.7	25.7
	1.0C	1,823.7	1,850.2	1,837.0	26.5
Discharge capacity [mAh]	0.33C	1853.5	1,878.6	1,866.1	25.1
	0.5C	1,817.8	1,843.3	1,830.6	25.5
	1.0C	1,776.8	1,801.5	1,789.2	24.7
Internal resistance[m 2]		24.58	26.17	25.38	1.59

새 셀의 경우 내부저항은 21.3±1[m 1]인데, 재활용 셀의 경우 평균 내부저항이 25.38[m 1]로 나타나 약 4.1[m Q], 즉 19.1[%] 상승하였다.

BESS에 사용되는 배터리 팩이 77개의 셀로 구성된다 면 배터리 팩의 평균 내부저항은 약 1640.10[m û]에서 약 1954.26[m û]으로 314.16[m û] 증가하게 된다.

표 3은 새 셀과 재활용 셀의 충·방전 용량을 비교한 것이다. 재활용 셀의 충·방전 용량은 새 셀에 비해 약 18.9~19.3[%] 정도 낮게 나타났으며, 이는 내부저항 상 승 비율과 밀접한 연관이 있다고 볼 수 있다.

그림 3은 재활용 셀의 내부저항 및 충전 용량 추이를 나타낸 것이다. 새 셀 기준으로 10년 정도 사용하게 되면 내부저항은 1.5배로 증가하고 충·방전 용량도 1,500 [mAh] 이하로 감소할 것으로 예상되었다.

Table 3. Comparison of charge · discharge capacity of new and recycled cells.

Charge & Discharge		Unit	0.33C	0.5C	1.0C
	New	mAh	2275.6	2272.8	2265.5
Charge	Recycled	mAh	1,837.2	1,838.7	1,837.0
Charge	Deviation	mAh	438.4	434.1	428.5
	Ratio	%	80.7	80.9	81.1
Discharge	New	mAh	2301.8	2264.5	2211.7
	Recycled	mAh	1,866.1	1,830.6	1,789.2
	Deviation	mAh	435.7	433.9	422.5
	Ratio	%	81.1	80.8	80.9

표 3. 새 셀과 재활용 셀의 충·방전 용량 비교

Fig. 3. Trends in internal resistance and charging
capacity of recycled cells.그림 3. 재활용 셀의 내부저항 및 충전 용량 추이

(2) SOC에 따른 OCV

표 4와 그림 4는 새 셀과 재활용 셀의 SOC에 따른 OCV 측정 결과이다. 재활용 셀이 SOC 60~90[%] 범위 에서 새 셀보다 약 19~28[mV] 정도 낮게 나타났으며, SOC 50[%] 이하 범위에서는 새 셀보다 약 10[mV] 이 내로 차이가 거의 없었다.

Table 4.	OCV	according	to	SOC	of	new	and	recycled
	cells.							

표 4. 새 셀과 재활용 셀의 SOC에 따른 OCV

OCV [V]		Gap	SOC [9/]
New cell	Recycled cell	[V]	30C [%]
4.048	4.045	0.003	100
3.946	3.918	0.028	90
3.855	3.831	0.024	80
3.772	3.751	0.021	70
3.691	3.672	0.019	60
3.647	3.638	0.009	50
3.622	3.617	0.005	40
3.594	3.588	0.004	30
3.541	3.538	0.003	20
3.465	3.464	0.001	10

Fig. 4. OCV according to SOC of new and recycled cells. 그림 4. 새 셀과 재활용 셀의 SOC에 따른 OCV

(3) 자가 방전 후 OCV와 내부저항 변화

표 5는 새 셀과 재활용 셀을 3개월 자연 방치 후 OCV 를 측정한 결과이다. 새 셀의 경우 OCV 변화는 최대 4[mV]이며, 재활용 셀의 경우 OCV 변화는 최대 7[mV] 로 나타났다.

표 6은 새 셀과 재활용 셀을 3개월 자연 방치 후 내부 저항을 측정한 결과이다. 새 셀의 경우 내부저항 변화는 최대 0.05[m û]로 나타났으며, 각 셀의 내부저항 편차는 1.1[m û] 이내로 거의 일정하였다. 재활용 셀의 경우 내 부저항 변화는 최대 0.07[m û]로 나타났으며, 각 셀의 내부저항 편차는 1.61[m û]로 초기 상태보다 방치 후가 다소 증가하였다.

1	0
T	o

OCV		Initial value	3 months later	Deviation
	Max	3.671	3.668	0.003
New [V]	Min	3.669	3.665	0.004
	Dev	0.002	0.003	-
	Max	3.577	3.572	0.005
Recycled [V]	Min	3.573	3.566	0.007
	Dev	0.004	0.006	-

Table 5. Comparison of OCV of new and recycled cells.표5. 새 셀과 재활용 셀의 OCV 비교

Table 6. Comparison of internal resistance of new and recycled cells.

Internal resistance		Initial value	3 months later	Deviation
	Max	21.53	21.57	0.04
New [mℚ]	Min	20.44	20.49	0.05
	Dev	1.09	1.08	-
	Max	26.17	26.24	0.07
Recycled	Min	24.58	24.63	0.05
	Dev	1.59	1.61	-

표 6. 새 셀과 재활용 셀의 내부저항 비교

Ⅲ. 결론

BESS에 재활용할 대상 셀은 약 5년간 사용한 것으로, 새 셀에 비해 내부저항이 약 19.1[%] 정도 상승하였고 충·방전 용량은 새 셀에 비해 약 18.9~19.3[%] 정도 낮게 나타나 약 19.5[%] 정도 노화가 발생하였다.

재활용 셀이 SOC 60~90[%] 범위에서 새 셀보다 OCV가 약 19~28[mV] 정도 낮게 나타났으나 그 편차 가 0.8[%] 미만으로 SOC 변화에 따른 셀의 노화 영향은 미흡하였다.

3개월 자연 방치 후 자가 방전에 대한 시험에서 OCV 변화는 새 셀의 경우 최대 4[mV]이며 재활용 셀의 경우 최대 7[mV]로 그 편차가 작았다. 내부저항 변화도 새 셀 의 경우는 최대 0.05[m û], 재활용 셀의 경우는 최대 0.07[m û] 변화하여 자가 방전에 따른 셀의 노화 영향은 미흡하였다.

내부저항과 충·방전 용량이 셀의 노화에 상호 밀접하 게 연관되어 있으므로 BESS에 적용할 셀은 초기 내부저 항보다 1.5배 이상 커지지 않고 충·방전 용량도 70[%] 이하로 낮아지지 않은 성능을 갖는 제품을 사용할 것을 권장하고자 한다.

References

 D. Y. Jung, J. H. Kim, S. C. Choi, S. W. Lee,
H. M. Han and C. Y. Won, "A Hybrid PCS Considering on a Residential Energy Storage System," *Trans. KIEE*. Vol.62, No.1, pp.63-69, 2013. DOI: 10.5370/KIEE.2012.62.1.063

[2] Y. H. Kim and S. H. Lee, "Characteristic Analysis of Internal Resistance on Lithium-ion Battery for Parameter Selection in Safety Diagnosis," *Trans. KIEE.* vol.72, no.11, pp.1534-1539, 2023. DOI: 10.5370/KIEE.2023.72.11.1534

[3] J. Y. Kim, S. G. Kwon, S. G. Park, I. H. Cho, G. B. Lee and J. H. Kim, "CNN based State-of-Charge Estimation of Lithium-ion Battery using Heat Distribution Image," *Journal of The Institute of Electronics and Information Engineers*, vol.58, no.10, pp.77-85, 2021.

DOI: 10.5573/ieie.2021.58.10.77

BIOGRAPHY

Phil-Jung Kim (Member)

1994 : B.S. degree in Electronic Engineering, Chosun University.1996 : M.S. degree in Electronic Engineering, Chosun University.2000 : Ph.D. degree in Electronic Engineering, Chosun University.

1996~1999: Researcher, Memory Research & Development Center, SK Hynix Inc.

2001~2012 : Assistant Professor, Dept. of IT, Sunghwa College.

2015~2023 : Assistant Professor, Dept. of Electronics, Chosun College of Science&Technology.

2024~present : Associate Professor, Dept. of Electronics, Chosun College of Science&Technology.

Seong-Soo Yang (Member)

2004 : B.S. degree in Information & Communication Engineering, DongShin University.

2006 : M.S. degree in Information & Communication Engineering, DongShin University.

2015 : Ph.D. degree in Information & CommunicationEngineering, DongShin University.2007~2018 : Adjunct Professor, Dept. Information &

Communication Engineering, DongShin University. 2019~Present : Assistant Professor, Dept. of Electronics, Chosun College of Science&Technology.