• Title/Summary/Keyword: volatile acids

Search Result 959, Processing Time 0.026 seconds

Volatile Flavor Composition of White-flowered Lotus by Solid-phase Microextraction (Solid-Phase Microextraction에 의한 백련의 휘발성 향기 성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.363-370
    • /
    • 2017
  • This study investigated the chemical composition of headspace gas from white-flowered lotus (Nelumbo nucifera Gaertner). Volatile flavor compositions of headspace from white-flowered lotus (floral leaf, stamen, flower stalk, stem) were investigated through the solid-phase microextraction method using polydimethylsiloxane-divinylbenzene fiber. The headspace was directly transferred to a gas chromatography-mass spectrometry. Sixty-three volatile flavor constituents were detected in the headspace of lotus floral leaves, and undecanoic acid (7.81%) was the most abundant component. Fifty-three volatile flavor constituents were detected in the headspace of lotus stamina, and isobutylidene phthalide (7.94%) was the most abundant component. Forty-four volatile flavor constituents were detected in the headspace of lotus flower stalks, and 3-butyl dihydrophthalide (11.23%) was the most abundant component. Fifty-nine volatile flavor constituents were detected in the headspace of lotus stems, and ligustilide (16.15%) was the most abundant component. The content of phthalides was higher in the headspace of flower stalks and stems, while alcohols and acids were the predominant compounds in lotus floral leaves.

Effect of Refrigerated and Thermal Storage on the Volatile Profile of Commercial Aseptic Korean Soymilk

  • Kim, Hun;Cadwallader, Keith R.;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.76-85
    • /
    • 2009
  • This study determined the effect of refrigerated and thermal storage on the volatile profile of commercial aseptic soymilk. Volatile components in commercial aseptic soymilk stored either under refrigerated ($4^{\circ}C$) or thermal ($55^{\circ}C$) conditions for 30 days were periodically analyzed by combined solvent-assisted flavor evaporation-gas chromatography-mass spectrometry (SAFE-GC-MS). The concentrations of most of the volatile components, including aldehydes, ketones, alcohols, acids, nitrogen- and sulfur-containing compounds, alkylfurans, furan derivatives and phenolic compounds, were affected to a greater extent by thermal storage compared with refrigerated storage. Profound increases in some volatile compounds with low odor detection thresholds, such as hexanal, octanal, (E)-2-octenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 3-ethyl-2,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, 2-pentylfuran, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, dimethyl trisulfide, guaiacol, 4-vinylguaiacol and 4-vinylphenol, were observed in thermal stored soymilk. The volatile profile changes caused by thermal storage may influence the aroma quality of thermal-stored aseptic soymilk.

Volatile Compounds of Orange Wines Produced with and without Peel Contact

  • Fan, Gang;Yao, Xiaolin;Xu, Yongxia;Li, Huanhuan;Fu, Hongfei;Wang, Kexing;Pan, Siyi
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1322-1329
    • /
    • 2009
  • The present study focused on the effects of peel contact on the volatile compounds of orange wines. The volatile compounds were analyzed by sensory and instrumental analyses. Solid-phase microextraction (SPME) was used for extraction of volatile compounds. A total of 19 and 27 volatile compounds were identified in without and with peel contact wines respectively. Esters were quantitatively the dominant group of volatile compounds in without peel contact wines, while terpenes were the most abundant compounds in peel contact wines. Totally 11 and 14 new formed compounds were found in without and with peel contact wines, mainly were esters, alcohols, and acids. According to sensory analysis, the peel contact wine showed a more citrus-like and fruity aroma than the wines without peel contact.

Antimicrobial Activity and Characterization of Volatile Flavor EXtracts from Agastache rugosa

  • Song, Jong-Ho;Kim, Min-Ju;Kwon, Kyuk-Dong;Lee, Won-Koo;Park, In-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 1999
  • Antimicrobial activity and chemical composition of volatile flavor extracts from Agastache rugosa were investigated. The volatile flavor extracts were obtained from leaves and stems of Agastache rugosa by simultaneous distillation extraction (SDE) method. Antimicrobial activity was investigated by disc diffusion and broth dilution methods against several microorganisms of Bacillus cereus, bacillus megaterium, Bacillus subtilis, Corynebacterium xerosis, Staphylo coccus aureus, Staphylococcus epidermidis, Agrobacterium rhizogenes , Agrobacterium tumefaciences, Enterobacter cloacae, Escherichia coli, Salmonella typhi, Vibrio parahaemolyticus, Candida utilis and Saccharomyces cerevisiae. Volatile flavor extractsfrom leaves have strong antimicrobial activity against C.utilis and S.cerevisiae. When 0.12% volatile flavor extracts from fresh leaves were included in the medium, lag phase of C. utilis was extended 6 hr and that of S.utilis and S.cerevisiae was extended 2hr. Further analyses were performed to elucidatethe effective component of the extracts. The major component of volatile flavor was estragole, a phenolic compound. Minor components were determined to be terpenes , alcohols, acids , esters, ketones and aldethydes.

  • PDF

ECOLOGICAL STUDY OF AROMATIC TOBACCO IN KOREA AND GREECE II. CHEMICAL COMPOSITION OF CURED LEAVES (향끽미종 연초의 한국, 그리스간 생태비교 연구 (II) 건조엽의 화학 성분)

  • 김용옥;류명현;손현주;라효환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 1987
  • KA 101 and Xanthi-Basma were cultivated in Korea and Greece to compare the respective responses to environments on their leaf composition during 1984 and 1985. Cured leaves cultivated in Greece had brighter and greenish color with 2-4 times higher total chlorophyll and carotenoids showing higher contents of total nitrogen, nicotine, petroleum ether extract, volatile acids and neutrals, but crude ash and pH of leaves at top stalk position were lower than in Korean cultured leaves. Xanthi-Basma showed higher contents of nicotine and total nitrogen, but lower contents of reducing sugar than KA 101. There were no difference in crude ash, petroleum ether extract contents and pH of leaves. Among stalk positions, the upper stalk leaves in Greece had higher contents of total nitrogen, protein nitrogen, nicotine, petroleum ether extract and volatile acids but lower contents of reducing sugar than lower ones., whereas the supper stalk leaves in Korea had much higher contents of total nitrogen, protein nitrogen, pH, crude ash, but not higher contents of petroleum ether extract and volatile acid contents than lower stalk position. It suggest that in chemical criteria the better quality leaves are on the upper stalk position in Greece but not the same in Korea probably due to the rainy weather conditions during the later growth stage in Korea.

  • PDF

Effects of Chemical Amendments on Phosphorus and Total Volatile Fatty Acids in Hanwoo Slurry (한우액상분뇨에 화학제재를 첨가 시 인과 총 휘발성지방산 함량에 미치는 영향)

  • Choi, In-Hag;Choi, Jung-Hoon
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.819-824
    • /
    • 2009
  • The objectives of this study were to evaluate the effects of chemical additives on total phosphorus (TP), soluble reactive phosphorus (SRP), and total volatile fatty acids (total VFAs) in hanwoo slurry. The treatments in this study were ferrous sulfate, alum, and aluminum chloride, and applied at the rate of 0, 0.5, and 1.0 g/25 g of hanwoo slurry. All of the chemical treatments significantly lowered TP (11 to 53% of the untreated control), SRP (41 to 99.9% of the untreated control), and total VFAs (22 to 48.5% of the untreated control) by reducing hanwoo slurry pH (3.42 to 6.86). Among these chemical amendments, addition of 0.5 g ferrous sulfate, alum, and aluminum chloride to hanwoo slurry were the best results evaluated on farms with respect to reducing negative environmental impacts. In conclusion, the results of this study indicate that the use of chemical amendments should be considered in the development of best management practices (BMPs) for the hanwoo industries.

Effects of Chemical Additives Containing Al and Ca on Volatile Fatty Acids and Nitrogen Contents of Litter (Al과 Ca을 함유한 화학제재의 첨가가 깔짚내 휘발성 지방산과 질소 함량에 미치는 영향)

  • Choi, In-Hag;Choi, Jung-Hoon
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2008
  • The objectives of this study were conducted to determine the effects of two chemical amendments on volatile fatty acids (VFA) and nitrogen contents in poultry litter after broiler chicks were raised in poultry houses for 6 weeks. Two different additives were applied as a top dressing to the litter at a rate of $AlCl_3{\cdot}6H_2O$ (200 g)+$CaCO_3$ (50 g) or Alum (200 g)+$CaCO_3$ (50 g)/kg of rice bran; untreated litter served as controls. Application of $AlCl_3+CaCO_3$ and Alum+$CaCO_3$ reduced total VFA contents by 67% and 51% at 6 weeks, respectively, compard to the control groups. The decrease in litter pH with two chemical treatments results in decreased proportion of VFA and increased nitrogen contents of the litter. These results indicate that treating $AlCl_3+CaCO_3$ and Alum+$CaCO_3$ to poultry litter offers the potential for reducing an environmental impact.

Quality Characteristics of Yakju fermented with Paddy Rice (Byeo) Nuruk Yakju (벼누룩으로 제조한 약주의 품질 특성)

  • Jeon, Jin-Ah;Kim, Min-Seong;Ko, Jae-Yoon;Jeong, Seok-Tae
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • In this study, quality characteristics of yakju fermented with byeo-nuruk prepared using rice, wheat, and water were investigated. Five different mixture ratios were considered for byeo-nuruk preparation. A comparative analysis of commercial yakju and byeo-nuruk yakju was also performed. The results showed no significant differences in pH, total acidity, and total soluble solids of byeo-nuruk yakju immediately following fermentation. The byeo-nuruk yakju alcohol content increased with increasing wheat proportion. Lactic and succinic acid were the major organic acids of byeo-nuruk yakju, and the major volatile components were isoamyl alcohol and linalool. Yakju prepared using material D had the highest volatile component content and high preference evaluation scores for taste and overall acceptability. Compared to commercial yakju, byeo-nuruk yakju had less total acidity, soluble solids, and volatile acids, whereas its pH level and amino acid content were higher. No significant differences were observed between commercial yakju and byeo-nuruk yakju in terms of sensory evaluation.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.

국내산 참당귀 추출물의 휘발성 향기성분

  • 곽재진;이재곤;장희진;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.210-217
    • /
    • 1998
  • Volatile flavor components of extracts produced from the domestic angelica root, which are oleoresin and absolutes type, for tobacco flavoring materials were isolated by solvent extraction method and were analyzed by GC and GC/MSD. And then volatile flavor components of oleoresin were compared with volatiles isolated from absolutes. A total of 65 components were identified in the angelica root extracts, from which 41 components were identified in the oleoresin volatiles, contained 15 hydrocarbons, 12 alcohols, 6 acids, 10 esters and 2 miscellaneous components. The major components were hexadecanoic acid (7.79%), methyl palmitate (6.49%), ethyl palmitate (2.02 %) and sesquiterpenes and sesquiterpene alcohols, such as elemol (2.92 %), ${\gamma}$-selinene (2.19%), $\beta$-selinene (2.02%), $\alpha$-eudesmol (3.49%) and $\beta$-eudesmol (6.12%). On the other hand, volatiles of absolutes, from which 60 components were identified, contained 28 hydrocarbons, 14 alcohols, 5 acids, 10 esters and 3 miscellaneous components. The major components were hyrocarbons, such as undecane (5.11 %), dodecane (3.10%) and pentadecane (1.14 %), and $\alpha$-muurolene (1.64 %), ${\gamma}$-selinene (1.49%), $\beta$-selinene (2.12 %), $\alpha$-eudesmol (2.25%), $\beta$-eudesmol (4.87%), hexadecanoic acid (12.67%) and hexanoic acid (1.87 %).

  • PDF