• Title/Summary/Keyword: vision-based technology

Search Result 1,063, Processing Time 0.027 seconds

Automatic Detection System for Dangerous Abandoned Objects Based on Vision Technology (비전 기술에 기반한 위험 유기물의 자동 검출 시스템)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.69-74
    • /
    • 2009
  • Abandoned objects should be treated as possibly dangerous things for public areas until they turn out to be safe because explosive material or chemical substance is intentionally contained in them for public terrors. For large public areas such as airports or train stations, there are limits in man-power for security staffs to check all the monitors for covering the entire area under surveillance. This is the basic motivation of developing the automatic detection system for dangerous abandoned objects based on vision technology. In this research, well-known DBE is applied to stably extract background images and the HOG algorithm is adapted to discriminate between human and stuff for object classification. To show the effectiveness of the proposed system, experiments are carried out in detecting intrusion for a forbidden area and alarming for abandoned objects in a room under surveillance.

  • PDF

A Vision-based Position Estimation Method Using a Horizon (지평선을 이용한 영상기반 위치 추정 방법 및 위치 추정 오차)

  • Shin, Jong-Jin;Nam, Hwa-Jin;Kim, Byung-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2012
  • GPS(Global Positioning System) is widely used for the position estimation of an aerial vehicle. However, GPS may not be available due to hostile jamming or strategic reasons. A vision-based position estimation method can be effective if GPS does not work properly. In mountainous areas without any man-made landmark, a horizon is a good feature for estimating the position of an aerial vehicle. In this paper, we present a new method to estimate the position of the aerial vehicle equipped with a forward-looking infrared camera. It is assumed that INS(Inertial Navigation System) provides the attitudes of an aerial vehicle and a camera. The horizon extracted from an infrared image is compared with horizon models generated from DEM(Digital Elevation Map). Because of a narrow field of view of the camera, two images with a different camera view are utilized to estimate a position. The algorithm is tested using real infrared images acquired on the ground. The experimental results show that the method can be used for estimating the position of an aerial vehicle.

A Study on Robot Arm Control System using Detection of Foot Movement (발 움직임 검출을 통한 로봇 팔 제어에 관한 연구)

  • Ji, H.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • The system for controlling the robotic arm through the foot motion detection was implemented for the disabled who not free to use of the arm. In order to get an image on foot movement, two cameras were setup in front of both foot. After defining multiple regions of interest by using LabView-based Vision Assistant from acquired images, we could detect foot movement based on left/right and up/down edge detection within the left/right image area. After transferring control data which was obtained according to left/right and up/down edge detection numbers from two foot images of left/right sides through serial communication, control system was implemented to control 6-joint robotic arm into up/down and left/right direction by foot. As a result of experiment, we was able to get within 0.5 second reaction time and operational recognition rate of more 88%.

  • PDF

Intelligent Abnormal Event Detection Algorithm for Single Households at Home via Daily Audio and Vision Patterns (지능형 오디오 및 비전 패턴 기반 1인 가구 이상 징후 탐지 알고리즘)

  • Jung, Juho;Ahn, Junho
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.77-86
    • /
    • 2019
  • As the number of single-person households increases, it is not easy to ask for help alone if a single-person household is severely injured in the home. This paper detects abnormal event when members of a single household in the home are seriously injured. It proposes an vision detection algorithm that analyzes and recognizes patterns through videos that are collected based on home CCTV. And proposes audio detection algorithms that analyze and recognize patterns of sound that occur in households based on Smartphones. If only each algorithm is used, shortcomings exist and it is difficult to detect situations such as serious injuries in a wide area. So I propose a fusion method that effectively combines the two algorithms. The performance of the detection algorithm and the precise detection performance of the proposed fusion method were evaluated, respectively.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

A Study on Automatic Seam Tracking and Weaving Width Control for Pipe Welding with Narrow Groove (협개선 배관 용접을 위한 용접선 추적 및 위빙 폭 자동 제어에 관한 연구)

  • Moon, Hyeong-Soon;Lee, Seok-Hyoung;Kim, Jong-Jun;Kim, Jong-Cheol
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.73-80
    • /
    • 2013
  • From broad point of view, seam tracking has been one of main issues with respect to welding automation. Several attempts have been successful for seam tracking of fixed weaving width. As a solution of the seam tracking methods for varying groove width, the visual sensors such as CCD cameras have been adopted. Although the vision sensing techniques can achieve high accuracy, the weak point is that well-prepared vision sensor environment should be required to obtain high-quality visual measurements which can be easily affected by significant noises in industrial areas. This paper proposed an alternative seam tracking algorithm for narrow groove. A special measurement device for arc voltage, in this study, is developed to enhance the reliability of the measured welding signals. Based on the developed arc sensor algorithm, an automatic weld-width tracking algorithm is also proposed, which is able to predict the weld-position more accurately. The usefulness of the automatic weld-width tracking algorithm was well verified by applying it to gas tungsten arc welding (GTAW).

  • PDF

Multi-Modal based ViT Model for Video Data Emotion Classification (영상 데이터 감정 분류를 위한 멀티 모달 기반의 ViT 모델)

  • Yerim Kim;Dong-Gyu Lee;Seo-Yeong Ahn;Jee-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.9-12
    • /
    • 2023
  • 최근 영상 콘텐츠를 통해 영상물의 메시지뿐 아니라 메시지의 형식을 통해 전달된 감정이 시청하는 사람의 심리 상태에 영향을 주고 있다. 이에 따라, 영상 콘텐츠의 감정을 분류하는 연구가 활발히 진행되고 있고 본 논문에서는 대중적인 영상 스트리밍 플랫폼 중 하나인 유튜브 영상을 7가지의 감정 카테고리로 분류하는 여러 개의 영상 데이터 중 각 영상 데이터에서 오디오와 이미지 데이터를 각각 추출하여 학습에 이용하는 멀티 모달 방식 기반의 영상 감정 분류 모델을 제안한다. 사전 학습된 VGG(Visual Geometry Group)모델과 ViT(Vision Transformer) 모델을 오디오 분류 모델과 이미지 분류 모델에 이용하여 학습하고 본 논문에서 제안하는 병합 방법을 이용하여 병합 후 비교하였다. 본 논문에서는 기존 영상 데이터 감정 분류 방식과 다르게 영상 속에서 화자를 인식하지 않고 감정을 분류하여 최고 48%의 정확도를 얻었다.

  • PDF

The Causal Relationship among Vision-sharing, Communication, Management Competences and Performance of Agricultural Product Unit in Rural Village Level (마을단위 농업경영체의 비전공유, 의사결정과정, 실무경영역량과 경영성과와의 관계)

  • Park, Un Sun;Park, Joo Sub;Jo, Hyung Rae;Lee, Sang Young
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.1
    • /
    • pp.105-141
    • /
    • 2013
  • This study focuses on the vision-sharing practices, actual management capabilities and marketing competence for management which are supposed to be associated with the performance of village-based agricultural production sector. For this, vast literatures related to this issues were reviewed and analyzed. and which were used to establishment of research model. And then questionnaire were developed along the research model, survey were implemented using the questionnaire. In survey both of questionnaire and interview were used to obtain proper opinion. Total of 51 completed questionnaires were obtained and used to empirical analysis. The correlation method was used to investigate the relationships between factors affecting performance of agricultural production unit and performance. Major findings are as follows: (1) in overall, factors related to the vision-sharing or communication are not so important or even negative effects on the performance (2) in overall, factors of management competences are relatively associated with the performances positively (3) in overall, general management capabilities like planning or analyzing were positively related to the performance (4)significant factors which were related to the positive effects on the performances were alternatives considering risk of depreciation, securing stable customers, retention of professional personnels.

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.