With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.
The present study aims to develop a real-time surface image velocimeter (SIV) using an Android smartphone. It can measure river surface velocity by using its built-in sensors and processors. At first the SIV system figures out the location of the site using the GPS of the phone. It also measures the angles (pitch and roll) of the device by using its orientation sensors to determine the coordinate transform from the real world coordinates to image coordinates. The only parameter to be entered is the height of the phone from the water surface. After setting, the camera of the phone takes a series of images. With the help of OpenCV, and open source computer vision library, we split the frames of the video and analyzed the image frames to get the water surface velocity field. The image processing algorithm, similar to the traditional STIV (Spatio-Temporal Image Velocimeter), was based on a correlation analysis of spatio-temporal images. The SIV system can measure instantaneous velocity field (1 second averaged velocity field) once every 11 seconds. Averaging this instantaneous velocity measurement for sufficient amount of time, we can get an average velocity field. A series of tests performed in an experimental flume showed that the measurement system developed was greatly effective and convenient. The measured results by the system showed a maximum error of 13.9 % and average error less than 10 %, when we compared with the measurements by a traditional propeller velocimeter.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.6
/
pp.2551-2562
/
2013
Since 2006, an Intelligent Excavation Robot which automatically performs the earth-work without operator has been developed in Korea. The technologies for automatically recognizing the terrain of work environment and detecting the objects such as obstacles or dump trucks are essential for its work quality and safety. In several countries, terrestrial 3D laser scanner and stereo vision camera have been used to model the local area around workspace of the automated construction equipment. However, these attempts have some problems that require high cost to make the sensor system or long processing time to eliminate the noise from 3D model outcome. The objectives of this study are to analyze the advantages of the existing 3D modeling sensors and to examine the applicability for practical use by using Analytic Hierarchical Process(AHP). In this study, 3D modeling quality and accuracy of modeling sensors were tested at the real earth-work environment.
In this paper, we propose a control method of virtual hand by the recognition of a user's hand in the virtual reality game environment. We display virtual hand on the game screen after getting the information of the user's hand movement and the direction thru input images by camera. We can utilize the movement of a user's hand as an input interface for virtual hand to select and move the object. As a hand recognition method based on the vision technology, the proposed method transforms input image from RGB color space to HSV color space, then segments the hand area using double threshold of H, S value and connected component analysis. Next, The center of gravity of the hand area can be calculated by 0 and 1 moment implementation of the segmented area. Since the center of gravity is positioned onto the center of the hand, the further apart pixels from the center of the gravity among the pixels in the segmented image can be recognized as fingertips. Finally, the axis of the hand is obtained as the vector of the center of gravity and the fingertips. In order to increase recognition stability and performance the method using a history buffer and a bounding box is also shown. The experiments on various input images show that our hand recognition method provides high level of accuracy and relatively fast stable results.
Recently, the use of floating hologram has increased in many different aspects, such as exhibitions, education, advertisements, and so on. Especially, the floating hologram that makes use of half-mirror is widely used. Nevertheless, half-mirror, unfortunately, cannot lead users to the perfect three dimensional hologram experience. Even though it can make the vision look to be up on the air, it does not have the capacity to display itself up on the air, which is the ultimate goal of hologram. In addition, it looks inconsistent when a real object is located behind the half-mirror in order to show the convergence of the two (object and the half-mirror). In this paper, we did the study on comparison of 3D space perception for the stereoscopic AR holography. At first, we applied stereoscopic technology to the half-mirror hologram system for the accurate and realistic AR environment. Then, the users can feel as if the real 3D object behind half-mirror and the reflected virtual image are converged much better in the 3D space. Furthermore, by using depth camera, the location and direction of graphics can be controlled to change depending on the user's point of view. This is the effective way to produce augmented stereoscopic images simply and accurately through half-mirror film without any additional devices. What we saw from the user test were applying 3D images and user interaction leads the users to have 3D spatial awareness and realism more effectively and accurately.
In this paper, we propose a classification model by analyzing raw material images recorded using a color CCD camera to automatically classify good and defective agricultural products such as rice, coffee, and green tea, and raw materials. The current classifying agricultural products mainly depends on visual selection by skilled laborers. However, classification ability may drop owing to repeated labor for a long period of time. To resolve the problems of existing human dependant commercial products, we propose a vision based automatic raw material classification combining mean shift clustering and stepwise region merging algorithm. In this paper, the image is divided into N cluster regions by applying the mean-shift clustering algorithm to the foreground map image. Second, the representative regions among the N cluster regions are selected and stepwise region-merging method is applied to integrate similar cluster regions by comparing both color and positional proximity to neighboring regions. The merged raw material objects thereby are expressed in a 2D color distribution of RG, GB, and BR. Third, a threshold is used to detect good and defective products based on color distribution ellipse for merged material objects. From the results of carrying out an experiment with diverse raw material images using the proposed method, less artificial manipulation by the user is required compared to existing clustering and commercial methods, and classification accuracy on raw materials is improved.
The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.
Journal of the Korean Association of Geographic Information Studies
/
v.23
no.2
/
pp.21-35
/
2020
Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.
In this paper, we propose a system which estimates Manhattan coordinate systems for urban scene images using a convolutional neural network (CNN). Estimating the Manhattan coordinate system from an image under the Manhattan world assumption is the basis for solving computer graphics and vision problems such as image adjustment and 3D scene reconstruction. We construct a CNN that estimates Manhattan coordinate systems based on GoogLeNet [1]. To train the CNN, we collect about 155,000 images under the Manhattan world assumption by using the Google Street View APIs and calculate Manhattan coordinate systems using existing calibration methods to generate dataset. In contrast to PoseNet [2] that trains per-scene CNNs, our method learns from images under the Manhattan world assumption and thus estimates Manhattan coordinate systems for new images that have not been learned. Experimental results show that our method estimates Manhattan coordinate systems with the median error of $3.157^{\circ}$ for the Google Street View images of non-trained scenes, as test set. In addition, compared to an existing calibration method [3], the proposed method shows lower intermediate errors for the test set.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.3
/
pp.164-173
/
2014
In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.