References
- Francisco, A.V., Fernando, C.R., Monica, P.S., and Francisco, O.R. 2015. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering I32:19-27.
- Frohn, R.C. 1998. Remote sensing for landscape ecology. Boca Raton, FL; Lewis Publishers.
- Ganasri, B.P. and Ramesh, H. 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS, Geoscience Frontiers 7:953-961. https://doi.org/10.1016/j.gsf.2015.10.007
- Genevieve, R., Mochael, S., and Frederic, B. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55:95-107. https://doi.org/10.1016/0034-4257(95)00186-7
- Hawkins, R.H. 1978. Runoff curve numbers with varying site moisture. Journal of the Irrigation and Drainage Division 104:389-398. https://doi.org/10.1061/JRCEA4.0001221
- Huete, A. 1988. A soil-adjusted vegetation index(SAVI). Remote sensing of Environment 25:295-309. https://doi.org/10.1016/0034-4257(88)90106-X
- Huete, A. and C. Justice. 1999. MODIS vegetation index(MOD 13) algorithm theoretical basis document. Greenbelt: NASA Goddard Space Flight Center.
- Irina, K. and Goga, C. 2018. Simulative modeling of the soil erosion processes. Annuals of Agrarian Science 16(2):185-188. https://doi.org/10.1016/j.aasci.2018.03.007
- Jones, K.B., Ritters, K.H., Wickham, J.D., Tankersley, R.D., O'Neill, R.V., Chaloud, D.J., Smith, E.R., and Neale, A.C. 1998. An ecological assessment of the united states, EPA.
- Jose, P.S.V. and Paulo, B. 2010. Post-fire vegetation regrowth detection in the deiva marina region using Landsat TM and ETM+ data. Ecological Modeling 221:75-84. https://doi.org/10.1016/j.ecolmodel.2009.03.011
- Juan, I.C., Jose, F.O., David, H., and Miguel, A.M. 2013. Estimation of lear area index in onion using an unmanned aerial vehicle. Biosystems Engineering II5:31-42.
- Juliane Bendig, Kang Yu, Helge Aasen, Andreas Bolten, Simon Bennertz, Janis Broscheit, Martin L. Gnyp, and Georg Bareth. 2015. Combinating UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation 39:79-87. https://doi.org/10.1016/j.jag.2015.02.012
- Jung, M.H. and Chang, E.M. 2013. Landcover vegetation change detection based on harmonic analysis of MODIS NDVI time series data. Korean Journal of Remote Sensing 29(4):351-360 https://doi.org/10.7780/kjrs.2013.29.4.1
- Kim, Y.S., Park, N.W., Hong, S.Y., Lee, K.D., and Yoo, H.Y. 2014. Early production of large-area crop classification map using time-series vegetation index and past crop cultivation patterns. Korean Journal of Remote Sensing 30(4):493-503 https://doi.org/10.7780/kjrs.2014.30.4.7
- Lee, K.D., Lee, Y.E., Park, C.W., Hong, S.Y., and Na, S.I. 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV eBee. Korean Journal of Soil Science and Fertilizer 49(6):731-742. https://doi.org/10.7745/KJSSF.2016.49.6.731
- Lee, D.W., Lee, K.J., Han, B.H., Jang, J.H., and Kim, J.Y. 2012. Change of green space arrangement and planting structure of apartment complexes in Seoul. Journal of Korean institute of landscape architecture 40(4):1-17 https://doi.org/10.9715/KILA.2012.40.4.001
- Lee, G.S. and Choi, Y.W. 2019. Analysis of cropland spectral properties and vegetation index Using UAV. Journal of the Korean Association of Geographic Information Studies 22(4):86-101
- Lee, G.S., Kim, S.G., and Choi, Y.W. 2015. A comparative study of image classification method to detect water body based on UAS. Journal of the Korean Association of Geographic Information Studies 18(3): 113-127 https://doi.org/10.11108/kagis.2015.18.3.113
- Lee, G.S., Song, J.K., and Cho, G.S. 2019. Direction of connection of cadastral information in GIS-based soil erosion evaluation. 한국지적정보학회지. 21(2):86-103
- Lee, J.W., Park, G.A., Joh, H.K., Lee, K.H., Na, S.I., Park, J.H., and Kim, S.J. 2011. Analysis of relationship between vegetation indices and crop yield using KOMPSAT (KOreaMulti-Purpose SATellite)-2 imagery and field investigation data. Journal of the Korean Society of Agricultural Engineers 53(3):75-82 https://doi.org/10.5389/KSAE.2011.53.3.075
- Mireia, G., Marta, C., David, M., Payam, D., Antonia, V., Antoni, P., and Mark, J.N. 2016. Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban Forestry & Urban Greening 19:88-94. https://doi.org/10.1016/j.ufug.2016.07.001
- Mishra S.K. and Singh V.P. 2003. SCS-CN method. Water Science and Technology Library 42:84-146. https://doi.org/10.1007/978-94-017-0147-1_2
- Moon, C.S., Shim, J.Y., Kim, S.B., and Lee, S.Y. 2010. Research Paper : A study on the calculation methods on the ratio of green coverage using satellite images and land cover maps. Journal of Korean Society of Rural Planning 16(4):53-60
- Morgan, R.P.C. 1981. Field measurement of splash erosion. International Association of Scientific Hydrology Publication 133:378-382.
- Na, S.I., Park, C.W., Cheong, Y.K., Kang, C.S., Choi, I.B., and Lee, K.D. 2016. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing. Korean Journal of Remote Sensing 32(5):483-497 https://doi.org/10.7780/kjrs.2016.32.5.7
- Nam, W.H., Jang, M.W., and Hong, S.Y. 2015. Satellite-based hybrid drought assessment using vegetation drought response index in south korea(VegDRI-SKorea). Journal of the Korean Society of Agricultural Engineers 57(4):1-9 https://doi.org/10.5389/KSAE.2015.57.4.001
- Qi, J., F. Cabot, M.S. Moran, and G. Dedieu. 1995. Biophysical parameters estimations using multi-directional spectral measurements. Remote Sensing of Environment 54:188-198.
- Ranjay, S., Liping, D., Eugene, G.Y., Lingjun, K., Yuan-zheng, S., and Yu-qi, B. 2017. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. Journal of Integrative Agriculture 16:398-407. https://doi.org/10.1016/S2095-3119(16)61502-2
- Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. 1974. Monitoring vegetation systems in the great plains with ERTS. Proceedings of Third Earth Resources Technology Satellite-1 Symposium, NASA, 1974. Vol. 351, pp.301-317.
- Running, S.W., Justice, C.O., Solomonson, V., Hall, D., Barker, J., Kaufmann, Y.J., Strahler, A.H., Huete, A.R., Muller, J.P., Vanderbilt, V., Wan, Z.M., Teillet, P., and Carneggie, D. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing 15(17):3587-3620. https://doi.org/10.1080/01431169408954346
- Tomas, J.R. and H.W. Gausman. 1977. Leat reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal 69:799-802. https://doi.org/10.2134/agronj1977.00021962006900050017x
- Xingwang F. and Yuanbo L. 2016. A global study of NDVI difference among moderate-resolution satellite sensors. Journal of Photogrammetry and Remote Sensing 121:177-191. https://doi.org/10.1016/j.isprsjprs.2016.09.008
- Yeom, J.M., Han, K.S., Lee, C.S., Park, Y.Y., and Kim, Y.S. 2008. A detection of vegetation variation over north korea using SPOT/VEGETATION NDVI. Journal of the Korean Association of Geographic Information Studies 11(2):28-37
- Zhang, F., Zhang, L.W, Shi, J.J., and Huang, J.F. 2014. Soil moisture monitoring based on land surface temperature vegetation index space derived from MODIS data. PEDOSPHERE 24(4):450-460. https://doi.org/10.1016/S1002-0160(14)60031-X