DOI QR코드

DOI QR Code

Drone-based Vegetation Index Analysis Considering Vegetation Vitality

식생 활력도를 고려한 드론 기반의 식생지수 분석

  • CHO, Sang-Ho (Dept. of Mineral Resources and Energy Engineering, Jeonbuk National University) ;
  • LEE, Geun-Sang (Dept. of Cadastre & Civil Engineering, Vision College of Jeonju) ;
  • HWANG, Jee-Wook (Dept. of Urban Engineering, Jeonbuk National University)
  • 조상호 (전북대학교 자원에너지공학과) ;
  • 이근상 (전주비전대학교 지적토목학과) ;
  • 황지욱 (전북대학교 도시공학과)
  • Received : 2020.05.06
  • Accepted : 2020.05.18
  • Published : 2020.06.30

Abstract

Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

식생정보는 도시계획, 조경, 수자원, 환경 등 다양한 분야에서 활용되는 매우 중요한 인자이다. 식생은 수관밀도 혹은 엽록소 함량에 따라 식생의 활력도에 차이가 발생하나 기존 연구에서는 식생지역을 분류시 식생 활력도를 고려하지 않았다. 본 연구에서는 다양한 응용연구를 충족시키기 위해 식생 활력도를 고려한 식생지수 경계값을 설정하는 연구를 수행하였다. 먼저 eBee 고정익 드론에 다중분광 카메라를 탑재하여 광학 및 근적외선 정사영상을 구축하였으며, 그리고 각 정사영상에 대해 GIS 연산을 수행하여 NDVI, GNDVI, SAVI, MSAVI 식생지수를 계산하였다. 또한 대상지에 대한 식생위치를 VRS 측량을 통해 조사하였으며 이를 이용하여 식생 활력도를 고려한 식생지수별 정확도를 평가하였다. 그 결과 식생 활력도가 좋은 지점을 식생지역으로 선정한 시나리오가 식생 활력도가 다소 부족한 지점도 식생지역으로 선정한 시나리오에 비해 식생지수의 분류 정확도가 높게 나타났다. 또한 각 현장 조사 지점과의 중첩을 통해 계산한 식생지수별 Kappa 계수를 통해 시나리오별로 식생을 분류하기에 가장 적합한 식생지수 경계값을 선정할 수 있었다. 따라서 본 연구에서 제시한 식생 활력도를 고려한 식생지수 정확도 평가는 향후 도시계획 등 다양한 업무 분야에서 의사결정 지원을 위한 유용한 정보를 제공해 줄 수 있을 것으로 판단된다.

Keywords

References

  1. Francisco, A.V., Fernando, C.R., Monica, P.S., and Francisco, O.R. 2015. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering I32:19-27.
  2. Frohn, R.C. 1998. Remote sensing for landscape ecology. Boca Raton, FL; Lewis Publishers.
  3. Ganasri, B.P. and Ramesh, H. 2016. Assessment of soil erosion by RUSLE model using remote sensing and GIS, Geoscience Frontiers 7:953-961. https://doi.org/10.1016/j.gsf.2015.10.007
  4. Genevieve, R., Mochael, S., and Frederic, B. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55:95-107. https://doi.org/10.1016/0034-4257(95)00186-7
  5. Hawkins, R.H. 1978. Runoff curve numbers with varying site moisture. Journal of the Irrigation and Drainage Division 104:389-398. https://doi.org/10.1061/JRCEA4.0001221
  6. Huete, A. 1988. A soil-adjusted vegetation index(SAVI). Remote sensing of Environment 25:295-309. https://doi.org/10.1016/0034-4257(88)90106-X
  7. Huete, A. and C. Justice. 1999. MODIS vegetation index(MOD 13) algorithm theoretical basis document. Greenbelt: NASA Goddard Space Flight Center.
  8. Irina, K. and Goga, C. 2018. Simulative modeling of the soil erosion processes. Annuals of Agrarian Science 16(2):185-188. https://doi.org/10.1016/j.aasci.2018.03.007
  9. Jones, K.B., Ritters, K.H., Wickham, J.D., Tankersley, R.D., O'Neill, R.V., Chaloud, D.J., Smith, E.R., and Neale, A.C. 1998. An ecological assessment of the united states, EPA.
  10. Jose, P.S.V. and Paulo, B. 2010. Post-fire vegetation regrowth detection in the deiva marina region using Landsat TM and ETM+ data. Ecological Modeling 221:75-84. https://doi.org/10.1016/j.ecolmodel.2009.03.011
  11. Juan, I.C., Jose, F.O., David, H., and Miguel, A.M. 2013. Estimation of lear area index in onion using an unmanned aerial vehicle. Biosystems Engineering II5:31-42.
  12. Juliane Bendig, Kang Yu, Helge Aasen, Andreas Bolten, Simon Bennertz, Janis Broscheit, Martin L. Gnyp, and Georg Bareth. 2015. Combinating UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation 39:79-87. https://doi.org/10.1016/j.jag.2015.02.012
  13. Jung, M.H. and Chang, E.M. 2013. Landcover vegetation change detection based on harmonic analysis of MODIS NDVI time series data. Korean Journal of Remote Sensing 29(4):351-360 https://doi.org/10.7780/kjrs.2013.29.4.1
  14. Kim, Y.S., Park, N.W., Hong, S.Y., Lee, K.D., and Yoo, H.Y. 2014. Early production of large-area crop classification map using time-series vegetation index and past crop cultivation patterns. Korean Journal of Remote Sensing 30(4):493-503 https://doi.org/10.7780/kjrs.2014.30.4.7
  15. Lee, K.D., Lee, Y.E., Park, C.W., Hong, S.Y., and Na, S.I. 2016. Study on reflectance and NDVI of aerial images using a fixed-wing UAV eBee. Korean Journal of Soil Science and Fertilizer 49(6):731-742. https://doi.org/10.7745/KJSSF.2016.49.6.731
  16. Lee, D.W., Lee, K.J., Han, B.H., Jang, J.H., and Kim, J.Y. 2012. Change of green space arrangement and planting structure of apartment complexes in Seoul. Journal of Korean institute of landscape architecture 40(4):1-17 https://doi.org/10.9715/KILA.2012.40.4.001
  17. Lee, G.S. and Choi, Y.W. 2019. Analysis of cropland spectral properties and vegetation index Using UAV. Journal of the Korean Association of Geographic Information Studies 22(4):86-101
  18. Lee, G.S., Kim, S.G., and Choi, Y.W. 2015. A comparative study of image classification method to detect water body based on UAS. Journal of the Korean Association of Geographic Information Studies 18(3): 113-127 https://doi.org/10.11108/kagis.2015.18.3.113
  19. Lee, G.S., Song, J.K., and Cho, G.S. 2019. Direction of connection of cadastral information in GIS-based soil erosion evaluation. 한국지적정보학회지. 21(2):86-103
  20. Lee, J.W., Park, G.A., Joh, H.K., Lee, K.H., Na, S.I., Park, J.H., and Kim, S.J. 2011. Analysis of relationship between vegetation indices and crop yield using KOMPSAT (KOreaMulti-Purpose SATellite)-2 imagery and field investigation data. Journal of the Korean Society of Agricultural Engineers 53(3):75-82 https://doi.org/10.5389/KSAE.2011.53.3.075
  21. Mireia, G., Marta, C., David, M., Payam, D., Antonia, V., Antoni, P., and Mark, J.N. 2016. Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of Barcelona city. Urban Forestry & Urban Greening 19:88-94. https://doi.org/10.1016/j.ufug.2016.07.001
  22. Mishra S.K. and Singh V.P. 2003. SCS-CN method. Water Science and Technology Library 42:84-146. https://doi.org/10.1007/978-94-017-0147-1_2
  23. Moon, C.S., Shim, J.Y., Kim, S.B., and Lee, S.Y. 2010. Research Paper : A study on the calculation methods on the ratio of green coverage using satellite images and land cover maps. Journal of Korean Society of Rural Planning 16(4):53-60
  24. Morgan, R.P.C. 1981. Field measurement of splash erosion. International Association of Scientific Hydrology Publication 133:378-382.
  25. Na, S.I., Park, C.W., Cheong, Y.K., Kang, C.S., Choi, I.B., and Lee, K.D. 2016. Selection of optimal vegetation indices for estimation of barley & wheat growth based on remote sensing. Korean Journal of Remote Sensing 32(5):483-497 https://doi.org/10.7780/kjrs.2016.32.5.7
  26. Nam, W.H., Jang, M.W., and Hong, S.Y. 2015. Satellite-based hybrid drought assessment using vegetation drought response index in south korea(VegDRI-SKorea). Journal of the Korean Society of Agricultural Engineers 57(4):1-9 https://doi.org/10.5389/KSAE.2015.57.4.001
  27. Qi, J., F. Cabot, M.S. Moran, and G. Dedieu. 1995. Biophysical parameters estimations using multi-directional spectral measurements. Remote Sensing of Environment 54:188-198.
  28. Ranjay, S., Liping, D., Eugene, G.Y., Lingjun, K., Yuan-zheng, S., and Yu-qi, B. 2017. Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer. Journal of Integrative Agriculture 16:398-407. https://doi.org/10.1016/S2095-3119(16)61502-2
  29. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. 1974. Monitoring vegetation systems in the great plains with ERTS. Proceedings of Third Earth Resources Technology Satellite-1 Symposium, NASA, 1974. Vol. 351, pp.301-317.
  30. Running, S.W., Justice, C.O., Solomonson, V., Hall, D., Barker, J., Kaufmann, Y.J., Strahler, A.H., Huete, A.R., Muller, J.P., Vanderbilt, V., Wan, Z.M., Teillet, P., and Carneggie, D. 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. International Journal of Remote Sensing 15(17):3587-3620. https://doi.org/10.1080/01431169408954346
  31. Tomas, J.R. and H.W. Gausman. 1977. Leat reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal 69:799-802. https://doi.org/10.2134/agronj1977.00021962006900050017x
  32. Xingwang F. and Yuanbo L. 2016. A global study of NDVI difference among moderate-resolution satellite sensors. Journal of Photogrammetry and Remote Sensing 121:177-191. https://doi.org/10.1016/j.isprsjprs.2016.09.008
  33. Yeom, J.M., Han, K.S., Lee, C.S., Park, Y.Y., and Kim, Y.S. 2008. A detection of vegetation variation over north korea using SPOT/VEGETATION NDVI. Journal of the Korean Association of Geographic Information Studies 11(2):28-37
  34. Zhang, F., Zhang, L.W, Shi, J.J., and Huang, J.F. 2014. Soil moisture monitoring based on land surface temperature vegetation index space derived from MODIS data. PEDOSPHERE 24(4):450-460. https://doi.org/10.1016/S1002-0160(14)60031-X