• Title/Summary/Keyword: viscous effects

Search Result 402, Processing Time 0.03 seconds

Nonlinear sloshing in rectangular tanks under forced excitation

  • Zhao, Dongya;Hu, Zhiqiang;Chen, Gang;Lim, Serena;Wang, Shuqi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.545-565
    • /
    • 2018
  • A numerical code is developed based on potential flow theory to investigate nonlinear sloshing in rectangular Liquefied Natural Gas (LNG) tanks under forced excitation. Using this code, internal free-surface elevation and sloshing loads on liquid tanks can be obtained both in time domain and frequency domain. In the mathematical model, acceleration potential is solved in the calculation of pressure on tanks and the artificial damping model is adopted to account for energy dissipation during sloshing. The Boundary Element Method (BEM) is used to solve boundary value problems of both velocity potential and acceleration potential. Numerical calculation results are compared with published results to determine the efficiency and accuracy of the numerical code. Sloshing properties in partially filled rectangular and membrane tank under translational and rotational excitations are investigated. It is found that sloshing under horizontal and rotational excitations share similar properties. The first resonant mode and excitation frequency are the dominant response frequencies. Resonant sloshing will be excited when vertical excitation lies in the instability region. For liquid tank under rotational excitation, sloshing responses including amplitude and phase are sensitive to the location of the center of rotation. Moreover, experimental tests were conducted to analyze viscous effects on sloshing and to validate the feasibility of artificial damping models. The results show that the artificial damping model with modifying wall boundary conditions has better applicability in simulating sloshing under different fill levels and excitations.

A Numerical Study on the Flow Development around a Rotating Square-Sectioned U-Bend(II) - Turbulent Flow - (회전하는 정사각 단면 U자형 곡관 내부의 유동 발달에 관한 수치적 연구(II) -난류 유동-)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.850-858
    • /
    • 2002
  • The present study investigates in detail the combined effects of the Coriolis force and centrifugal force on the development of turbulent flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a curved region of U-bend, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal force due to the curvature of U-bend. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct. On the other hand, under negative rotation, where these two forces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces. Under the condition that the value of Rossby number and curvature ratio is large, the flow field in a rotating U-bend can be represented by two dimensionless parameters : $K_{TC}$ =Re $\sfrac{1}{4}$√λand a body force ratio F=λ/Ro. Here, $K_{TC}$ has the same dynamical meaning as $K_{TC}$ =Re√λ for laminar flow.

A Study on Feed Rate Characteristics of Motor-driven Cylinder Lubricator with Electronic Control Quill in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 전자제어 퀼 부착 모터구동 실린더 주유기의 송출유량 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Jung, Yeun-Hak;Kim, In-Deok;Kang, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke marine diesel engine is of great economic importance. In Korea, authors first developed a motor-driven cylinder lubricator for a Wartsila Switzerland large two-stroke diesel engine. The characteristic of the developed product is that can control automatically the oil feed rate with a load fluctuation by the motor drive and the offset cam. For manufacturing the reliable and useful products, however, it is necessary to investigate further characteristics and to improve performances as a cylinder lubricator. In this study, the effects of pump motor speed, plunger stroke and cylinder back pressure on oil feed rate, maximum discharge and delivery pressures are experimentally investigated by using the electronically controlled quill injection system and distributer in the developed cylinder lubricator. It is found that the oil feed rates of electronic control and mechanical type quills with the in-cylinder back pressure are differently characterized by the role of accumulator, the viscous resistance of contact area, etc. It can be also shown that the maximum discharge pressure of the electronic control quill is lower than the mechanical type one but the maximum discharge pressure difference of two types decreased as plunger stroke is small, and the maximum delivery pressures of two types increased as plunger stroke, motor speed and back pressure are elevated but the maximum delivery pressure of mechanical type is higher than the one of electronic control type.

Single Dose Oral Toxicity Test of Peucedani Radix in ICR Mice (ICR 마우스를 이용한 전호의 단회경구투여 독성 실험)

  • Kwon, Da-hye;Kim, Min-young;Hwangbo, Hyun;Ji, Seon-yeong;Park, Cheol;Choi, Yung-hyun;Hong, Su-hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.676-685
    • /
    • 2018
  • Objectives: The aim of this study was to estimate the single oral toxicity of Peucedani Radix (PR) ethanol extracts. PR is one of the important herbs for removal of phlegm, the viscous turbid pathological product that can accumulate in the body and cause a variety of diseases. However, research on the pharmacologic toxicity of PR is lacking. Methods: In this study, PR was orally administered to 5-week-old male ICR mice at an oral dose of 2,000, 3,000, or 5,000 mg/kg. After a single-dose administration, the mortality and behavioral changes were observed daily and body weights were measured every two days. After 14 days, the organ weight, organ index, macroscopy, hematological analysis, and serum biochemistry analysis were determined. Results: No mortality, body weight changes, abnormal behavioral changes, or anatomical signs of toxicity were found. The organ weight, organ index, hematological analysis, and serum biochemistry analysis were also within the normal ranges. Conclusions: These results suggest that the 50% lethal dose of PR is more than 5,000 mg/kg. This could indicate that PR is a safe drug without acute toxicity and side effects.

A Study on Characteristics of a Compensator System for Swash Plate Type Axial Piston Pump (사판식 액시얼 피스톤 펌프의 가변용량 시스템의 특성에 관한 연구)

  • Kim, Shin;Oh, Suk-Hyung;Jung, Jae-Youn
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.15-22
    • /
    • 1998
  • Recently, the importance of variable displacement piston pump is increasing in industrial world. Especially, most consumers require various range of pressures and flow rates. Pressure compensator is a system controlling flow rate in piston pump at low cost and, therefore, satisfies the need of consumers. However, the system has serious problems, such as response and leakage. The response and leakage are affected by clearance between actuator piston and cylinder, roughness of surface, and spool overlap. In this paper, these effects are investigated experimentally, and optimal clearance and chamfer is obtained. While diameter of cylinder is fixed and diameter of actuator piston is changed in this experiment, response and leakage are measured. Also parameters such as roughness and processing accuracy are changed for piston of fixed clearance. Experimental setup modelled into several parts of actuator piston, cylinder, spool, and swash plate. Input pressure is changed by function generator and proportional valve. The result of this experiment shows that leakage increases very much in proportion to the increase of clearance, and especially leakage occurs enormously when clearance is more than 0.002. The response is not good because as clearance increases leakage increases and as clearance decreases viscous damping effect increases. Accordingly, it is found out that optimal clearance range exists for tile response, within about 0.0012∼0.0014, at this time. Futhermore, the better roughness and geometrical accuracy of actuator piston are, the smaller are leakage and friction. The paper informs that response and leakage are influenced by and geometrical accuracy of actuator piston, roughness of surface, and the clearance between actuator piston and cylinder, and that optimal design of actuator piston in the pressure compensator is possible.

Unsteady Flow Analysis around an Elliptic Cylinder at Various angles of Attack: Drag and Lift Forces (받음각이 있는 타원형 실린더 주위의 비정상 유동해석: 항력 및 양력 고찰)

  • Park, Young-Bin;Kim, Moon-Sang;Kim, Hark-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.1-8
    • /
    • 2005
  • A parametric study has been accomplished to figure out the effects of the elliptic cylinder thickness, angle of attack, and Reynolds number on the lift and drag forces exerted on the elliptic cylinder. A two-dimensional incompressible Navier-Stokes flow solver is developed using SIMPLER method to analyze the unsteady viscous flow over elliptic cylinder. Thickness-to-chord ratios of 0.2, 0.4, and 0.6 elliptic cylinders are simulated at different Reynolds numbers of 400 and 600, and angles of attack of $10^{\circ}$, $20^{\circ}$, and $30^{\circ}$. Through this study, it is observed that the elliptic cylinder thickness, angle of attack, and Reynolds number affect significantly not only the time-mean values and the amplitudes of the drag and lift forces but also the frequencies of the force oscillations.

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

A Study on the Refining Performance Improvement of Marine Sludge Fuel Oil(I) (for the temperature and pressure effects in metal filtering element) (선박 슬러지유의 정유성능 향상에 관한 연구(I)(금속여과망의 유압력 및 유온의 영향에 대해서))

  • 한원희;하만식;이진열
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 2003
  • As ship's fuel oil recently becomes viscous and the amount of sludge increases, many researches and studies are underway to process the sludge onboard the ship and to recycle it as a fuel for ship's boiler. Of many researches, especially ultrasonic emulsifier to break the particle of sludge into fine pieces is recognized as a most possible recycling device. In this regards, the author investigates the property change of sludge's temperature and pressure at the early stage of the study of ultrasonic emulsifier. This study can be used as a useful dora to determine the proper temperature and pressure to inject the processed sludge in the boiler injector and the results can also be comparable dora with the experimental data by ultrasonic emulsifier. In addition, the results will be a fundamental data to study the filtering efficiency of the sludge particle broken by temperature and pressure. It is expected that this study ultimately play a role to prevent marine oil pollution as the sludge is recycled onboard the ship and used as a fuel for boiler.

  • PDF

Motion and sloshing analysis for new concept of offshore storage unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.189-195
    • /
    • 2000
  • New concept of LNG-FPSO ship with moonpool and bilge step in bottom is considered and investigated in the point of motion reduction and sloshing phenomena of the cargo and operation tanks. The cargo capacity of the ship of which principle dimensions is L x B x D x t(design) =270.0 x 51.0 x 32.32 x 13.7(m) 16K at 98% loading condition. The two moonpools and rectangular step at bilge part are setted up specially for getting the effect of motion decrease. For the motion analysis, linearized three dimensional diffraction theory with the simplified boundary conditions is used. The six-degree of freedom coupled motion responses are calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel are taken into account in this calculation program using an empirical formula suggested by Ikeda, Himeno and Tanaka is used. The case study for the moonpool size had been carried out by theoretical estimation and experimental method. For the optimization of the moonpool size and effect of the step, 9 cases of its size and with and without step are considered. From the results of calculation and experiment, it can be concluded that this designed LNG-FPSO ship have possibility to carry out her missions in the rough sea as for the owner's demand waves condition. The motion responses, especially roll motion, for the designed LNG-FPSO ship are much lower than those of another drillship and shuttle tanker and limit criterions are satisfied. For the check of the cargo tank and operation tank sizes we have performed sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and No5. tanks of LNG-FPSO with chamfers. Finally we got the tank size which has no resonance and no impact pressure in all filling in the bow quartering and beam sea.

  • PDF

MANAGEMENT OF HASĀH WA RAML AL-KULYA (NEPHROLITHIASIS) IN UNANI SYSTEM OF MEDICINE: A REVIEW

  • Khan, Khalid Ali;Khan, Rashid Ali;Zakir, Mohammad
    • CELLMED
    • /
    • v.10 no.3
    • /
    • pp.19.1-19.6
    • /
    • 2020
  • The kidneys are exposed to toxicants and waste product and can be affected easily by these toxicants and by products of the metabolism. The consumption of adequate water is necessary to remove waste and to keep kidney healthy. Deficiency of liquid in the blood leads to various adverse effects on the kidney. The most common adverse deficiency of liquid in blood is deposition of solid matter in the kidney and subsequently formation of kidney stone. Nephrolithiasis (kidney stone) can be treated by drugs if it is small in size but if it blocks the route due to its big size then surgery is the only way to remove it. The recurrence rate of the problem is very high and it may reappear within 10 years. In Unani literature Hasāh wa Raml al-Kulya (nephrolithiasis) is described in detail. As per Unani literature stagnation of Ghalīz mādda (filthy and viscous matter) in the kidney is the main cause of the formation of kidney stone. Various single and compound formulations drugs are described for the management of kidney stone which are very effective as well as safe. Management is divided into two parts i.e. symptomatic treatment to relieve pain and to methods adopted to remove stone from the kidney. Musakkin-i-Waja'(analgesic) drugs are used for pain while Mufattit-i-Hasāh (lithotriptic) and Mudirr-i-Bawl (Diuretic) drugs are used to remove stone. Majoon Aqrab, Qurs Kaknaj and Dawa-e-Gurda etc. are compound drugs mentioned in literature for removal of kidney stone. Single drugs like Alu Balu, Tukhm Khayar, and Kharkhask etc. are also used for same purpose.