• 제목/요약/키워드: viscous

검색결과 2,151건 처리시간 0.023초

Backfill and subsoil interaction effects on seismic behavior of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.117-138
    • /
    • 2014
  • The main focus of the current study is to evaluate the dynamic behavior of a cantilever retaining wall considering backfill and soil/foundation interaction effects. For this purpose, a three-dimensional finite element model (FEM) with viscous boundary is developed to investigate the seismic response of the cantilever wall. To demonstrate the validity of the FEM, analytical examinations are carried out by using modal analysis technique. The model verification is accomplished by comparing its predictions to results from analytical method with satisfactory agreement. The method is then employed to further investigate parametrically the effects of not only backfill but also soil/foundation interactions. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses. It is concluded that the lateral displacements and stresses in the wall are remarkably affected by backfill and subsoil interactions, and the dynamic behavior of the cantilever retaining wall is highly sensitive to mechanical properties of the soil material.

밑으로부터 가열되는 평면 Couette 유동에서 점성소산이 열적 불안정성에 미치는 영향 (Effects of Viscous Dissipation on the Thermal Instability of Plane Couette Flow Heated from Below)

  • 유정열;박영무
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.489-498
    • /
    • 1988
  • An analysis has been given for the effect of viscous dissipation on the thermal instability of plane Couette flow between two parallel plates maintained at different constant temperatures. Under the assumption that the principle of the exchange of stabilities holds, stationary disturbance quantities in the form of longitudinal vortices are considered. The magnitudes of disturbance quantities are then represented as fast convergent power series so that the eigenvalue problem for determining the onset conditions of the thermal instability may be reduced to a simplified problem of finding the roots of a $4{\times}4$ determinant. It is shown that as the magnitude of the visucous dissipation increases the flow becomes more susceptible to instabilities, which is in very good agreement with previous results obtained in some related researches.

  • PDF

On Weakly Z Symmetric Spacetimes

  • De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.761-779
    • /
    • 2018
  • The object of the present paper is to study weakly Z symmetric spacetimes $(WZS)_4$. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat $(WZS)_4$ spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field ${\rho}$. We also study $(WZS)_4$ spacetimes with divergence free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid $(WZS)_4$ spacetimes. Finally, we construct an example of a $(WZS)_4$ spacetime.

SORET AND DUFOUR EFFECTS ON RADIATIVE HYDROMAGNETIC FLOW OF A CHEMICALLY REACTING FLUID OVER AN EXPONENTIALLY ACCELERATED INCLINED POROUS PLATE IN PRESENCE OF HEAT ABSORPTION AND VISCOUS DISSIPATION

  • VENKATESWARLU, M.;BHASKAR, P.;LAKSHMI, D. VENKATA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권3호
    • /
    • pp.157-178
    • /
    • 2019
  • The present correspondence is conveyed on to consider the fascinating and novel characteristics of radiative hydromagnetic convective flow of a chemically reacting fluid over an exponentially accelerated inclined porous plate. Exact solutions for the fluid velocity, temperature and species concentration, under Boussinesq approximation, are obtained in closed form by the two term perturbation technique. The interesting parts of thermal dispersing outcomes are accounted in this correspondence. Graphical evaluation is appeared to depict the trademark direct of introduced parameters on non dimensional velocity, temperature and concentration profiles. Also, the numerical assortment for skin friction coefficient, Nusselt number and Sherwood number is examined through tables. The certification of current examination is confirmed by making an examination with past revelations available in composing, which sets a benchmark for utilization of computational approach.

비선형 거동을 하는 비좌굴가새의 유한요소모델 검증 (Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior)

  • 김대홍;유정한
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.

Nonlocal thermal vibrations of embedded nanoplates in a viscoelastic medium

  • Zenkour, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.701-711
    • /
    • 2022
  • The nonlocal elasticity as well as Mindlin's first-order shear deformation plate theory are proposed to investigate thermal vibrational of a nanoplate placing on a three-factor foundation. The Winkler-Pasternak elastic foundation is connected with the viscous damping to obtain the present three-parameter viscoelastic model. Differential equations of motion are derived and resolved for simply-supported nanoplates to get their natural frequencies. The influences of the nonlocal index, viscous damping index, and temperature changes are investigated. A comparison example is dictated to validate the precision of present results. Effects of other factors such as aspect ratio, mode numbers, and foundation parameters are discussed carefully for the vibration problem. Additional thermal vibration results of nanoplates resting on the viscoelastic foundation are presented for comparisons with future investigations.

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Nonlinear viscous material model

  • Ivica Kozar;Ivana Ban;Ivan Zambon
    • Coupled systems mechanics
    • /
    • 제12권5호
    • /
    • pp.419-428
    • /
    • 2023
  • We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

Numerical Simulation on the Onset of Radial Fingering in a Hele-Shaw Cell or a Porous Medium

  • Min Chan Kim
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.112-117
    • /
    • 2024
  • Numerical simulations on the onset and the growth of viscous fingering during the miscible displacement due to the radial source flow were conducted. With introduction of a new stability criterion, the critical log-viscosity ratio, Rc, was found as a function of the Peclet number, Pe. Similar to the previous linear stability analyses, Pe made the system unstable, i.e., accelerated the onset of instability. For a large Pe system, the present numerical simulation yielded much stable results than the previous theoretical predictions This discrepancy was commonly encountered in the comparison between the theoretical prediction and the experimental finding. Additionally, the difference between the rectilinear system and the present one was also discussed. The present system was found more insensitive to the Peclet number than the rectilinear one.

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.