• Title/Summary/Keyword: viscous

Search Result 2,151, Processing Time 0.028 seconds

An Investigation on the Formation Characteristics of a Single Vortex Interacting with Counterflow Nonpremixed Flame (대향류 비예혼합화염과 상호작용하는 단일 와동의 생성특성에 관한 연구)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.49-56
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the formation characteristics of a single vortex interacting with $CH_4/N_2$-Air counterflow nonpremixed flame. The numerical method was based on a predictor-corrector scheme for a low Mach number flow. The detailed transport properties and a 16-step augmented reduced mechanism are adopted in this calculation. The budgets of the vorticity transport equation arc examined to reveal the mechanisms leading to the formation, evolution and dissipation of a single vortex interacting with counterflow nonpremixed flame. It is found that the stretching term, which depends on the azimuthal component of vorticity, and radial velocity, mainly generates vortieitv in non-reacting and reacting flows. The viscous and baroclinic torque term destroy the vorticity in non-reacting flow. In addition, the baroclinic torque term due to density and pressure gradient generates vorticity, while viscous and the volumetric expansion terms due to density gradient destroy vorticity in reacting flow.

  • PDF

Development of nano/micro forming and evaluation technology of Zr-base bulk metallic glass (Zr계 벌크 비정질 합금의 미세성형 및 평가기술 개발)

  • Ok M.-R.;Suh J. Y.;Chung S. J.;Hong K. T.;Ji Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.44-47
    • /
    • 2004
  • Although bulk metallic glasses have many outstanding aspects in their chemical, mechanical or functional properties, some critical problems still hinder their wide application. The most important one is the brittle nature of them, which is the serious problem to structural application. So, to use viscous flow is now the only competent way to form bulk metallic glass. In this study, we investigated the basic nature of viscous flow of Zr-base bulk metallic glass, vitrelloy 1, in terms of process variables. The results were used to design the thermo-mechanical process composed of heating, holding, pressing, and cooling, which have unique influence on the glass transition and crystallization behavior. We adopted small load scale and dies with nano/micro patterns on them. The results were evaluated using several analytical methods.

  • PDF

Study on the Parameter Decision of Spring-viscous Dampers for Torsional Vibration Reduction of Diesel Engine Shafting System (디젤엔진축계 진동저감을 위한 스프링-점성 댐퍼의 매개변수 결정 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.;Shin, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1168-1175
    • /
    • 2010
  • Excessive torsional vibrations from marine engine shafting systems can be reduced by using torsional vibration dampers. But in order to be tuned effectively, the dampers should be designed through the optimum design procedure. In this paper, the procedure to get the optimum values of system parameters of spring-viscous dampers using effective modal mass of inertia and stiffness is suggested and the damping is determined by the exact algebra optimization method. The validity of the suggested method is confirmed through the application to a 1800 kW four cycle diesel engine and generator system.

Study on the change in stiffness of nailed joints due to creep (CREEP에 의한 못 결합부(結合部)의 강성도(剛性度)의 변화(變化)에 관한 연구(硏究))

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.35-43
    • /
    • 1989
  • Nailed joints, which are commonly used in Wooden structures, transmit loads from one member to another and induce partial composite actions between members. Long-term loads induce creep slip in nailed joints and affect load sharing and partial composite action, which may reduce joint stiffness. Two theoretical viscous-viscoelastic models were developed for nailed joints to predict creep behavior under long-term variable loads. Those models were also used to predict stiffness changes under long-term variable loads. The stiffness of nailed joint is defined as a Secant modulus which is called the joint modulus or slip modulus. Input data for the models are the results of constant load tests under three different load levels. To verify the models, nailed joints were also tested under two long-term variable load functions. The predictions of the models were very close to the experimental data. Therefore, the theoretical viscous-viscoelastic models and procedures developed in this study can be applied to predict creep slip and the changes in joint moduli of nailed joints under long-term variable loads.

  • PDF

Mechanical Impedance at the Interface between a Torsionally-Vibrating Rod and a Viscous Fluid (비틀림 진동 봉과 점성 유체의 경계면에서의 역학적 임피던스)

  • 전한용;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.153-159
    • /
    • 2002
  • This paper deals with the measurement of the fluid viscosity by using the torsional vibration of a circular red excited by a torsional vibrator at one end. The effect of an adjacent viscous fluid on the torsional vibration of the rod has been studied theoretically and expressed in terms of the mechanical impedance. The theoretically-obtained trend that the mechanical impedance is proportional to the square root of the viscosity times the density of the fluid has been confirmed by the impedance measurement. The paper demonstrates that a torsionally-vibrating rod can be used as a sensor to measure the viscosity of a fluid.

  • PDF

Influence of ambient groundwater flow on DNAPL migration in a fracture network

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.43-46
    • /
    • 2003
  • We consider influences of the aperture variation and the ambient groundwater flow on the migration of DNAPL within a fracture network. In context of a modified invasion percolation (MIP) growth algorithm, we formulate a mechanistic model that includes capillary and gravity forces as well as viscous forces within the DNAPL and the ambient groundwater. The MIP model is verified against laboratory experiments, which is conducted using a two-dimensional random fracture network model. The results show that the aperture variation and ambient groundwater flow can be significant factors controlling DNAPL migration path within fracture networks.

  • PDF

The study on the measurement for the pressure drop and friction factor of corrugated metal pipes (주름관에서의 압력강하와 마찰손실 계측에 관한 연구)

  • Yun, Young-Sun;Kang, Jun-One;Yoo, Jai-Suk;Kim, Hyung-Jung
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • The data for friction factor of the pipe correlated by Reynolds number and relative roughness have been reported well as a Moody chart. However, the results for corrugated shapes have been not investigated sufficiently. In this research, therefore, the pressure drop and friction factor are obtained. Flexible metal tubes with corrugations for the measurement are made of stainless steel plates. The kinds of tubes for the measurement are 5 annular types and helical types. The pressure drop & the velocity of the flow are obtained by micromanometer & digital pressure sensor, supplying dry air at several steps. Then the pressure drop is calculated for each tube, using the obtained data. The result shows that the pressure drop is strongly influenced by the viscous dissipation of kinetic energy due to the circulation of flows, rather than a viscous friction loss. The pressure drop increased consistently as the Reynolds number increases.

  • PDF

Development of the Hybrid Vibration Isolator for Large Superprecision Stage (대형 초정밀 스테이지용 복합 아이솔레이터 개발)

  • Kim, Won-Kyum;Jung, Soon-Chul;Chang, Seung-Hwan;Lee, Jae-Eung;Shin, Dong-Su;Lee, Jae-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1404-1408
    • /
    • 2006
  • In this paper, a hybrid-type vibration isolator which has air chamber(spring) and viscous damper in series is developed. The developed vibration isolator is designed to perform 3 following functions : spring function for normal operating conditions, damping function to reduce an impact for sudden move of upper beam, and finally leveling function. Based on the given natural frequency and damping factor, the design procedure is proposed. The performance of the developed isolator is tested by measuring stiffness and damping.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Kim, H.J.;Ryu, B.J.;Jung, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • The paper presents the influences of the external damping and the tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached mechanical parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

Numerical Analysis of the Viscous Flow around a Cooling Tower Fan with Sweep (스윕을 가진 냉각탑용 쿨링팬 주위의 점성유동 해석)

  • Oh, Keon-Je
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.33-39
    • /
    • 2004
  • Viscous flows around a cooling tower fan with sweep are numerically investigated. The Navier-Stokes equations and the continuity equation are solved in the flow domain. The Reynolds stresses are modelled using the $\kappa-{\varepsilon}$ turbulence model. The governing equations are discretized with the Finite Volume Method. The pressure and the velocity are linked with the SIMPLE algorithme. Flow and pressure characteristics around the fan are investigated. The pressure sharply increases through the fan. Pressure variations on the pressure and suction sides of the fan are well represened in the calculations. The flow streamlines in the blade passage are nearly parallel to the blade.

  • PDF