• Title/Summary/Keyword: viscosity coefficient

Search Result 337, Processing Time 0.024 seconds

COMPUTATION OF LAMINAR NATURAL CONVECTION OF NANOFLUID USING BUONGIORNO'S NONHOMOGENEOUS MODEL (Buongiorno의 비균질 모델을 사용한 나노유체의 층류 자연대류 해석)

  • Choi, S.K.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • A numerical study of a laminar natural convection of the CuO-water nanofluid in a square cavity using the Buongiorno's nonhomogeneous model is presented. All the governing equations including the volume fraction equation are discretized on a cell-centered, non-uniform grid employing the finite-volume method with a primitive variable formulation. Calculations are performed over a range of Rayleigh numbers and volume fractions of the nanopartile. From the computed results, it is shown that both the homogeneous and nonhomogeneous models predict the deterioration of the natural convection heat transfer well with an increase of the volume fraction of nanoparticle at the same Rayleigh number, which was observed in the previous experimental studies. It is also shown that the differences in the computed results of the average Nusselt number at the wall between the homogeneous and nonhomogeneous models are very small, and this indicates that the slip mechanism of the Brown diffusion and thermophoresis effects are negligible in the laminar natural convection of the nanofluid. The degradation of the heat transfer with an increase of the volume fraction of the nanoparticle in the natural convection of nanofluid is due to the increase of the viscosity and the decrease of the thermal expansion coefficient and the specific heat. It is clarified in the present study that the previous controversies between the numerical and experimental studies are owing to the different definitions of the Nusselt number.

Production Of Gellan Gum by Pseudomonas elodea (I) -Estimation of Metabolic Parameters and Rheological Properties of Culture Broth- (Pseudomonas elodea에 의한 Gellan Gum 생산(I) -metabolic parsmeter의 추정및 배양액의 유변학적 특성-)

  • 정봉우;박선호
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.235-240
    • /
    • 1990
  • A quantitative physiological approach has been employed to estimate the metabolic parameters such as specific uptake rates of nutrients and specific production rate in continuous culture of Pseudomonas elodea for gellan gum production. The estimated values of metabolic parameters are used for process improvement. During the exponential growth phase, the specific growth rate was 0.16hr-1 in batch culture. The gellan gum concentration increased up to 0.7g dry weight/100g broth and the apparent viscosity of the culture broth was about 4,500 cp.(72hrs culture). The ratio of specific uptake rate of carbon to that of nitrogen were found to be optimum at about 3.0mg-carbon/mg-nitro-gen. With the improved medium, the maximum gellan production rate, 0.6g dry weight/1/hr, was obtained at D=0.14 hr-1. The shear stresses of culture broth were fairly well correlated with shear rates by using Casson equation and at highly viscous culture broth, oxygen transfer coefficient was greatly reduced.

  • PDF

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF

Preparation and Properties Enhancement of Epoxy Resin Employing Poly(amic acid) (PAA) (Poly(amic acid) (PAA)를 함유한 에폭시 수지의 제조 및 물성 향상)

  • 이용택;배성호;박병천
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.254-262
    • /
    • 2001
  • Epoxy resin based upon the N,N'-diglycidylaniline which is widely used in optic, electronic and composite material. We modified this epoxy resin with poly(amic acid) (PAA) that is a precursor of polyimide. To improve the mechanical property we controlled PAA content and imidization ratio. PI-modified epoxy blends were prepared for the formation of IPN structure. The possible reaction in the epoxy resin/PAA blends were investigated by FT-IR and inherent viscosity techniques. Thermal properties are measured by TGA, DSC, and TMA. Mechanical properties are measured by UTM and impact test machine. Morphology is investigated by SEM. Thermal stability improved with increasing the content of PAA in blends. As the content of PAA increases in blend, the glass transition temperature and thermal expansion coefficient decreases. Increasing impact strengths in J/m in the range of 920∼2412 were observed in blends. The PAA segment may act as a toughening agent in the epoxy networks, thus contributing the impact strength improvement of the blends.

  • PDF

Effect of Working Fluids on the Thermal Behavior of a Bi-directional Solar Thermal Diode (작동유체가 양방향성 태양열 열다이오드의 열성능 변화에 미치는 영향 분석)

  • Ko, Yung-Joo;Lee, Heon-Ju;Chun, Won-Gee;Chen, Kuan;Lim, Sang-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • An experimental investigation has been carried out to study the effects of different working fluids on the behavior and thermal performance of a hi-directional thermodiode. The thermodiode was made up of two rectangular loops mounted between a collector plate and a radiator plate. Rotatable joints between the horizontal and inclined segments of the loops enable easy alteration of the direction of heat transfer. The loops and the tank were filled with a working fluid for effective heat transfer when the thermodiode was forwarded biased. Six different working fluids were tested with thermal conductivity values ranging from 0.1 to $0.56W/m-^{\circ}C$, thermal expansion coefficient values ranging from $1.8\;{\times}10^{-4}$ to $1.3\;{\times}\;10^{-3}\;K^{-1}$, and kinematic viscosity values ranging from $0.65\;{\times}\;10^{-6}$ to $100\;{\times}\;10^{-6}\;m^2/s$. Especially, mixtures of $Al_2O_3$ (30nm Particle) in deionized water have been tested for the volumetric ratios of 0.01, 0.02, 0.03, 0.1, 0.2%. Each experiment was carried out after the loop was filled with a working fluid for effective heat transfer and the thermodiode was forwarded biased. The solar thermodiode was heated by a radiant heater consisting of 20 halogen lamps that generated a heat flux of about $1000\;W/m^2$ on the collector surface. Results are given in terms of temperature development in different parts of the loop as heat is delivered from its hot end to the surrounding atmosphere by the radiator made of copper plates.

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

Enhancement of Hyaluronic Acid Production by Batch Culture of Streptococcus zooepidemicus via the addition of n-Dodecane as an Oxygen Vector

  • Liu, Long;Yang, Haiquan;Zhang, Dongxu;Du, Guocheng;Chen, Jian;Wang, Miao;Sun, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.596-603
    • /
    • 2009
  • This study aimed to examine the influence of adding an oxygen vector, n-dodecane, on hyaluronic acid (HA) production by batch culture of Streptococcus zooepidemicus. Owing to the high viscosity of culture broth, microbial HA production during 8-16 h was limited by the oxygen transfer coefficient $K_La$, which could be enhanced by adding n-dodecane. With the addition of n-dodecane to the culture medium to a final concentration of 5% (v/v), the average value of $K_La$ during 8-16 h was increased to $36{\pm}2h^{-1}$, which was 3.6 times that of the control without n-dodecane addition. With the increased $K_La$ and dissolved oxygen (DO) by adding 5% (v/v) of n-dodecane, a 30% increase of HA production was observed compared with the control. Furthermore, the comparison of the oxygen mass transfer in the absence and presence of n-dodecane was conducted with two proposed mathematical models. The use of n-dodecane as an oxygen vector, as described in this paper, provides an efficient alternative for the optimization of other aerobic biopolymer productions, where $K_La$ is usually a limiting factor.

Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: in vitro and in vivo evaluation studies

  • Kim, Ki-Taek;Kim, Min-Hwan;Park, Ju-Hwan;Lee, Jae-Young;Cho, Hyun-Jong;Yoon, In-Soo;Kim, Dae-Duk
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.512-523
    • /
    • 2018
  • Background: 20(S)-Protopanaxadiol (20S-PPD) is a fully deglycosylated ginsenoside metabolite and has potent dermal antiaging activity. However, because of its low aqueous solubility and large molecular size, a suitable formulation strategy is required to improve its solubility and skin permeability, thereby enhancing its skin deposition. Thus, we optimized microemulsion (ME)-based hydrogel (MEH) formulations for the topical delivery of 20S-PPD. Methods: MEs and MEHs were formulated and evaluated for their particle size distribution, morphology, drug loading capacity, and stability. Then, the deposition profiles of the selected 20S-PPD-loaded MEH formulation were studied using a hairless mouse skin model and Strat-M membrane as an artificial skin model. Results: A Carbopol-based MEH system of 20S-PPD was successfully prepared with a mean droplet size of 110 nm and narrow size distribution. The formulation was stable for 56 d, and its viscosity was high enough for its topical application. It significantly enhanced the in vitro and in vivo skin deposition of 20S-PPD with no influence on its systemic absorption in hairless mice. Notably, it was found that the Strat-M membrane provided skin deposition data well correlated to those obtained from the in vitro and in vivo mouse skin studies on 20S-PPD (correlation coefficient $r^2=0.929-0.947$). Conclusion: The MEH formulation developed in this study could serve as an effective topical delivery system for poorly soluble ginsenosides and their deglycosylated metabolites, including 20S-PPD.

Comparison of Arrhenius and VTF Description of Ion Transport Mechanism in the Electrolytes (전해질 이온이동 기작 기술을 위한 아레니우스 모델 및 VTF 모델 비교)

  • Kim, Hyoseop;Koo, Bonhyeop;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.81-89
    • /
    • 2020
  • To understand the performance of the electrochemical device, the analysis of the mechanism of ionic conduction is important. However, due to the ionic interaction in the electrolyte and the complexity of the electrolyte structure, a clear analysis method of the ion conduction mechanism has not been proposed. Instead, a variety of mathematical models have been devised to explain the mechanism of ion conduction, and this review introduces the Arrhenius and Vogel-Tammann-Fulcher (VTF) model. In general, the above two mathematical models are used to describe the temperature dependence of the transport properties of electrolytes such as ionic conductivity, diffusion coefficient, and viscosity, and a suitable model can be determined through the linearity of the graph consisting of the logarithm of the moving property and the reciprocal of the temperature. Currently, many electrolyte studies are evaluating the suitability of the above two models for electrolytes by varying the composition and temperature range, and the ion conduction mechanism analysis and activation energy calculation are in progress. However, since there are no models that can accurately describe the transport properties of electrolytes, new models and improvement of existing models are needed.

A Low- Viscousity, Highly Thermally Conductive Epoxy Molding Compound (EMC)

  • Bae, Jong-Woo;Kim, Won-Ho;Hwang, Seung-Chul;Choe, Young-Sun;Lee, Sang-Hyun
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • Advanced epoxy molding compounds (EMCs) should be considered to alleviate the thermal stress problems caused by low thermal conductivity and high elastic modulus of an EMC and by the mismatch of the coefficient of thermal expansion (CTE) between an EMC and the Si-wafer. Though A1N has some advantages, such as high thermal conductivity and mechanical strength, an A1N-filled EMC could not be applied to commercial products because of its low fluidity and high modules. To solve this problem, we used 2-$\mu\textrm{m}$ fused silica, which has low porosity and spherical shape, as a small size filler in the binary mixture of fillers. When the composition of the silica in the binary filler system reached 0.3, the fluidity of EMC was improved more than twofold and the mechanical strength was improved 1.5 times, relative to the 23-$\mu\textrm{m}$ A1N-filled EMC. In addition, the values of the elastic modules and the dielectric constant were reduced to 90%, although the thermal conductivity of EMC was reduced from 4.3 to 2.5 W/m-K, when compared with the 23-$\mu\textrm{m}$ A1N-filled EMC. Thus, the A1N/silica (7/3)-filled EMC effectively meets the requirements of an advanced electronic packaging material for commercial products, such as high thermal conductivity (more than 2 W/m-K), high fluidity, low elastic modules, low dielectric constant, and low CTE.