DOI QR코드

DOI QR Code

Comparison of Arrhenius and VTF Description of Ion Transport Mechanism in the Electrolytes

전해질 이온이동 기작 기술을 위한 아레니우스 모델 및 VTF 모델 비교

  • Received : 2020.07.29
  • Accepted : 2020.11.23
  • Published : 2020.11.30

Abstract

To understand the performance of the electrochemical device, the analysis of the mechanism of ionic conduction is important. However, due to the ionic interaction in the electrolyte and the complexity of the electrolyte structure, a clear analysis method of the ion conduction mechanism has not been proposed. Instead, a variety of mathematical models have been devised to explain the mechanism of ion conduction, and this review introduces the Arrhenius and Vogel-Tammann-Fulcher (VTF) model. In general, the above two mathematical models are used to describe the temperature dependence of the transport properties of electrolytes such as ionic conductivity, diffusion coefficient, and viscosity, and a suitable model can be determined through the linearity of the graph consisting of the logarithm of the moving property and the reciprocal of the temperature. Currently, many electrolyte studies are evaluating the suitability of the above two models for electrolytes by varying the composition and temperature range, and the ion conduction mechanism analysis and activation energy calculation are in progress. However, since there are no models that can accurately describe the transport properties of electrolytes, new models and improvement of existing models are needed.

전기화학 소자의 성능을 이해하는 데 있어서 전해질 내 이온 전도 기작을 이해하는 것은 매우 중요하다. 그러나 이론적/실험적 어려움으로 인해 아직 완벽한 전해질 내 이온 전도 기작 분석법은 정립되지 못했다. 대신 이온 전도 기작을 기술하기 위한 몇 가지 수학적 모델이 고안되었으며, 본 총설에서는 대표적인 사례인 아레니우스(Arrhenius) 모델과 Vogel-Tammann-Fulcher(VTF) 모델을 소개한다. 일반적으로 이 두 모델은 이온 전도도, 확산 계수, 점도와 같은 이동 특성(transport properties)의 온도 의존성을 기술하는 데 사용되며, 주어진 전해질에 적합한 수학적 모델은 이동 물성의 로그 값과 온도의 역수가 이루는 그래프의 선형성을 통해 판별할 수 있다. 현재 많은 전해질 연구는 다양한 조성과 온도 범위에서 두 모델 중에서 더 적합한 모델을 선정하고, 이를 통해 이온 전도 기작 분석과 활성화 에너지를 도출한다. 향후 전해질 이동 특성을 더욱 정확하게 기술할 수 있는 모델의 개발이 필요하다.

Keywords

References

  1. K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi and M. Watanabe, 'Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes', J. Phys. Chem. B., 122, 10736-10745 (2018). https://doi.org/10.1021/acs.jpcb.8b09439
  2. G. Y. Gu, S. Bouvier, C. Wu, R. Laura, M. Rzeznik and K. M. Abraham, '2-Methoxyethyl (methyl) CarbonateBased Electrolytes for Li-Ion Batteries', Electrochim. Acta., 45, 3127-3139 (2000). (Figure 6, 7) Reprinted from Electrochim. Acta., 45, G. Y. Gu, S. Bouvier, C. Wu, R. Laura, M. Rzeznik and K. M. Abraham, 2-Methoxyethyl (methyl) Carbonate-Based Electrolytes for Li-Ion Batteries, 3129-3130., Copyright (2020), with permission from Elsevier. https://doi.org/10.1016/S0013-4686(00)00394-7
  3. G. Y. Gu, R. Laura and K. M. Abraham, 'ConductivityTemperature Behavior of Organic Electrolytes', Electrochem. Soild-State Lett., 2, 486-489 (1999). https://doi.org/10.1149/1.1390879
  4. Y. Wu, "Lithium-Ion Batteries: Fundamentals and Applications" CRC Press, Florida (2015).
  5. M. Petrowsky and R. Frech, 'Temperature Dependence of Ion Transport: The Compensated Arrhenius Equation', J. Phys. Chem. B., 113, 5996-6000 (2009). https://doi.org/10.1021/jp810095g
  6. R. Syed, D. L. Gavin and C. T. Moynihan, 'Functional Form of Arrhenius Equation for Electrical Conductivity of Glass', J. Am. Ceram. Soc., 65, 129-130 (1982).
  7. H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao and J. Lin, 'The Polymer Gel Electrolyte Based on Poly(methyl methacrylate) and Its Application in Quasi-Solid-DyeSensitized Solar Cells', Mater. Chem. Phys., 110, 38-42 (2008). https://doi.org/10.1016/j.matchemphys.2008.01.010
  8. C. Wastlund, M. Schmidt, S. Schantz and F. H. J. Maurer, 'Free Volume, Mobility and Structural relaxations in Poly(Ethylene Oxide)/Poly(Methyl Methacrylate) Blends', Polym. Eng. Sci., 38, 1286-1294 (1998). https://doi.org/10.1002/pen.10299
  9. Z. Ogumi, "Lithium Secondary Batteries", Ajin, Korea (2010).
  10. Y. Kang, K. Cheong, K. Noh, C. Lee and D. Seung, 'A Study of Cross-Linked PEO Gel Polymer Electrolytes Using Bisphenol a Ethoxylate Diacrylate: Ionic Conductivity and Mechanical Properties', J. Power. sources., 119-121, 432-437 (2003). https://doi.org/10.1016/S0378-7753(03)00183-6
  11. K. M. Diederichsen, H. G. Buss and B. D. McCloskey 'The Compensation Effect in the Vogel-TammannFulcher (VTF) Equation for Polymer-Based Electrolytes', Macromolecules., 50, 3831-3840 (2017). https://doi.org/10.1021/acs.macromol.7b00423
  12. B. Wang, S. Q. Li and S. J. Wang, 'Correlation between the Segmental Motion and Ionic Conductivity of Poly(ether urethane)-LiClO4 Complex Studied by Positron Spectroscopy', Phys. Rev. B., 56, 11503-11507 (1997). https://doi.org/10.1103/PhysRevB.56.11503
  13. O. Bohnke, C. Bohnke and J. L. Fourquet, 'Mechanism of Ionic Conduction and Electrochemical Intercalation of Lithium into the Perovskite Lanthanum Lithium Titanate', Solid. State. Ionics., 91, 21-31 (1996). https://doi.org/10.1016/S0167-2738(96)00434-1
  14. S. S. Zhang and G. X. Wan, 'Single-Ion Conduction and Lithium Battery Application for Ionomeric CrossLinking Polymer', J. Appl. Polym. Sci., 48, 405-409 (1993). https://doi.org/10.1002/app.1993.070480304
  15. P. M. Richardson, A. M. Voice and I. M. Ward, 'Pulsedfield Gradient NMR Self Diffusion and Ionic Conductivity Measurements for Liquid Electrolytes Containing LiBF4 and Propylene Carbonate', Electrochim. Acta., 130, 606-618 (2014). https://doi.org/10.1016/j.electacta.2014.03.072
  16. M. D. Ediger, C. A. Angell and S. R. Nagel, 'Supercooled Liquids and Glasses', J. Phys. Chem., 100, 13200-13212 (1996). (Figure 3, 4.) Reprinted with permission from (M. D. Ediger, C. A. Angell and S. R. Nagel, 'Supercooled Liquids and Glasses', J. Phys. Chem., 100, 13200-13212 (1996).). Copyright (2020) American Chemical Society. https://doi.org/10.1021/jp953538d
  17. S. Sakka and J. D. Mackenzie, 'Relation Between Apparent Glass Transition Temperature and Liquidus Temperature for Inorganic Glasses', J. Non. Cryst. Solids., 6, 145-162 (1971). https://doi.org/10.1016/0022-3093(71)90053-6
  18. J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta and G. C. Allan, 'Viscosity of Glass-Forming Liquids', Proc. Nati. Acad. Sci. USA., 106, 19780-19784 (2009). https://doi.org/10.1073/pnas.0911705106
  19. J. P. Southall, H. V. St. A. Hubbard, S. F. Johnston, V. Rogers, G. R. Davies, J. E. McIntyre and I. M. Ward, 'Ionic Conductivity and Viscosity Correlations in Liquid Electrolytes for Incorporation into PVDF Gel Electrolytes', Solid. State. Ion., 85, 51-60 (1996). https://doi.org/10.1016/0167-2738(96)00040-9
  20. M. S. Ding and T. R. Jow, 'Conductivity and Viscosity of PC-DEC and PC-EC Solution of LiPF6', J. Electrochem. Soc., 150, 620-628 (2003). (Figure 5.) M. S. Ding and T. R. Jow, 'Conductivity and Viscosity of PC-DEC and PC-EC Solution of LiPF6', J. Electrochem. Soc., 150, 620-628 (2003). © IOP Publishing. Reproduced with permission. All rights reserved.
  21. W. Lu, K. Xie, Y. Pan, Z. Chen and C. Zheng, 'Effects of Carbon-Chain Length of Trifluoroacetate Co-Solvents for Lithium-Ion Battery Electrolytes Using at Low Temperature', J. Fluor. Chem., 156, 136-143 (2013). (Figure 2.) Reprinted from J. Fluor. Chem., 156, W. Lu, K. Xie, Y. Pan, Z. Chen and C. Zheng, Effects of Carbon-Chain Length of Trifluoroacetate Co-Solvents for Lithium-Ion Battery Electrolytes Using at Low Temperature, 139., Copyright (2020), with permission from Elsevier. https://doi.org/10.1016/j.jfluchem.2013.08.015
  22. H. J. Rhoo, H. T. Kim, J. K. Park and T. S. Hwang, 'Ionic Conduction in Plasticized PVC/PMMA Blend Polymer Electrolytes', Electrochim. Acta., 42, 1571-1579 (1997). https://doi.org/10.1016/S0013-4686(96)00318-0
  23. S. Ramesh, K. H. Leen, K. Kumutha and A. K. Arof, 'FTIR Studies of PVC/PMMA Blend Based Polymer Eletrolytes', Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 66, 1237-1242 (2007) https://doi.org/10.1016/j.saa.2006.06.012
  24. S. Surampudi, R. A. Marsh, Z. Ogumi and J. Prakash, "Lithium Batteries: Proceedings of the International Symposium", The Electrochemical Society, New Jersey (2000).
  25. P. Jeevanandam, S. V. Vasudevan, 'Arrhenius and NonArrhenius Conductivities in Intercalated Polymer electrolytes', J. Chem. Phys., 109, 8109-8117 (1998). https://doi.org/10.1063/1.477459
  26. R. Baskaran, S. Selvasekarapandian, G. Hirankumar and M. S. Bhuvaneswari, 'Vibrational, Ac Impedance and Dielectric Spectroscopic Studies of Poly(vinylacetate)-N,N-Dimethylformamid-LiClO4 Polymer Gel Electrolytes', J. Power. Sources., 134, 235-240 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.025
  27. Y. H. Choi and W. K. Lee, 'Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion', J. Korean. Ind. Eng. Chem., 20, 459-463 (2009).
  28. N. Binesh and S. V. Bhat, 'VTF to Arrhenius Crossover in Temperature Dependence of Conductivity in (PEG)xNH4ClO4 Polymer Electrolyte', J. Polym. Sci. B. Polym. Phys., 36, 1201-1209 (1997).
  29. S. S. Zhang, Q. G. Liu and L. L. Yang, 'Single-Ionic Conductivity in Poly(Sodium 2-Methacryloyl 3-[ΩMethoxyl Oligo(Oxyethylene)]Propylsulfonate)', J. Macromol. Sci., 31, 543-553 (1994).
  30. L. M. Carvalho, P. Guegan, H. Cheradame, and A. S. Gomes, 'Variation of the Mesh Size of PEO-Based Networks Filled with TFSILi: from an Arrhenius to WLF Type Conductivity Behavior', Eur. Polym. J., 36, 401-409 (2000) https://doi.org/10.1016/S0014-3057(99)00057-9