• Title/Summary/Keyword: viscosity coefficient

Search Result 337, Processing Time 0.036 seconds

INFLUENCE OF EDDY VISCOSITY COEFFICIENT ON ${\kappa}-{\varepsilon}$ TURBULENCE MODEL FOR SUPERSONIC BASE FLOW (초음속 기저부 유동에서 ${\kappa}-{\varepsilon}$ 난류 모델에 대한 와점성 계수의 영향)

  • Park, Soo-Hyung;Sa, Jeong-Hwan;Kim, Jee-Woong;Kwon, Jang-Hyuk;Kim, Chang-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • A supersonic base flow is computed to investigate the effect of the eddy viscosity coefficient to the linear ${\kappa}-{\varepsilon}$ turbulence models. Slight modifications to the eddy viscosity coefficient, which are based on the realizability condition, are given to the Launder-Sharma turbulence model so that present models satisfy the realizability condition. Numerical results for supersonic base flow show that turbulence models with the weaky-nonlinear eddy viscosity coefficient can lead to reasonable enhancements in the prediction of the velocity and turbulent kinetic energy profiles.

The study on characteristics of viscosity friction coefficient for a motor (전동기 점성마찰계수 특성에 관한 연구)

  • Byun, Yeun-Sub;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1082-1083
    • /
    • 2007
  • Electric motors are widely used from precision industry to home appliance. For the precision control of the motors, if it is possible, we need the information of the correct motor parameters. In the motor torque equation, the motor inertia moment and the viscosity friction coefficient are regarded as constant. However the viscosity friction coefficient is not constant in the real system. In this paper, we show that the viscosity friction coefficient has the nonlinear property through the real test and we present the nonlinear function for the viscosity friction coefficient.

  • PDF

Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment) (박판성형 해석용 마찰모델 (1부 : 실험))

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.

The Helium-Xenon Interaction Potential

  • Elaheh K. Goharshadi;Majid Moinssadati
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.945-947
    • /
    • 2001
  • The He-Xe interaction potential has been determined using a direct inversion of the experimentally reduced-viscosity collision integrals obtained from the corresponding states correlation. The potential is in a good agreement with the previously determined potential. The potential predicts viscosity and diffusion coefficients and they are found to be in a good agreement with experiment.

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Experimental Study on Frictional Characteristics of Sheet Metal Forming (박판성형 마찰특성의 실험적 연구)

  • 금영탁;이봉현;차지혜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.54-57
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction tests of various sheets were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extreme1y low or high, the friction coefficient is high. As punch comer radius and punch speed are bigger, the value of friction coefficient is smaller. The sensitivity of friction coefficient is mainly governed by lubricant viscosity and sheet surface roughness.

  • PDF

Friction Model of Sheet Metal Forming Considering Lubricant and Surface Roughness (윤활과 표면조도를 고려한 박판 성형 마찰 모델)

  • 이봉현;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.543-550
    • /
    • 2001
  • In order to find the effect of material property and lubricant viscosity on the frictional characteristics a sheet metal friction tester was designed and tensile test, surface roughness test, and friction test were performed with several kinds of drawing oils. Test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, friction coefficient is also high. Using these test results, the friction model considering lubricant viscosity and surface roughness is developed. The validity and accuracy of the friction model are shown by comparing the punch loads among FEM analysis results employing current friction model and conventional friction model respectively and experimental measurement.

  • PDF

Enhanced vertical diffusion coefficient at upper layer of suspended sediment concentration profile

  • Kim, Hyoseob;Jang, Changhwan;Lhm, Namjae
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.289-295
    • /
    • 2012
  • Assume fluid eddy viscosity in the vertical direction is parabolic. Sediment particles diffuse with the given fluid eddy viscosity. However, when the vertical diffusion coefficient profile is computed from the suspended sediment concentration profile, the coefficient shows lager values than the fluid mixing coefficient values. This trend was explained by using two sizes of sediment particles. When fine sediment particles like wash load are added in water column the sediment mixing coefficient looks much larger than the fluid mixing coefficient.

Sensitivity Analysis of Effective Viscosity Coefficients for Computing Characteristics of Ultrathin Gas Film Bearings (초미세 틈새의 기체 베어링 해석용 유효 점도의 표현식과 관련 계수들의 민감도 해석)

  • Kim, Ui Han;Rhim, Yoon Chul
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • A more accurate expression for effective viscosity is obtained using a linear regression of the data from Fukui-Kaneko's model, which are obtained through numerical calculations based on the linearized Boltzmann equation. Veijola and Turowski's expression is adopted as a base function for effective viscosity. The four coefficients in that equation are optimized, and sensitivity analysis is conducted for these coefficients. The results show that the coefficient for the first-order Knudsen number is the most accurate, whereas the coefficient in the exponential of the Knudsen number is the least accurate compared with Fukui-Kaneko's results. The expression for effective viscosity is accurate within 0.02% rms of Fukui-Kaneko's results for the inverse Knudsen numbers from 0.01 to 100 and surface accommodation coefficients ranging from 0.7 to 1.