• 제목/요약/키워드: viscoelastic flow

검색결과 166건 처리시간 0.021초

공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향 (Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows)

  • 민태기;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1227-1238
    • /
    • 2000
  • This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • 제20권1호
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사 (Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds)

  • 박동명;김학주;윤재룡;류민영
    • Elastomers and Composites
    • /
    • 제41권4호
    • /
    • pp.223-230
    • /
    • 2006
  • 고무복합체는 높은 점탄성 성질을 보이는데 압출성형 시 이 점탄성 성질 때문에 압출물이 팽창하게 된다. 그리고 팽윤양은 공정 조건에 따라서 변한다. 점탄성 성질에서 탄성 부분은 압출물의 팽창에 있어서 중요한 역할을 한다. 본 논문은 모세관 다이에서 여러 가지 고무복합체에 따른 다이팽윤을 알아보기 위해 상용 CFD 프로그램인 Polyflow를 사용하여 해석을 수행하였다. 컴퓨터 모사에서는 비선형 미분 점탄성 모델인 Phan-Thien-Tanner(PTT) 모델을 사용하였고 온도를 고러하여 해석하였다. 해석을 통해서 레저버와 모세관 다이에서 압출물의 압력, 속도, 그리고 온도 분포 등을 예측하였다. 여러 가지 고무 복합체의 다이 팽윤양을 알아보기 위해서 유량과 모세관 다이의 지름을 변경하면서 연구하였다. 본 연구를 통해서 PPT 모델은 고무 복합체에 대한 점탄성 거동을 잘 표현하고 있음을 확인할 수 있었다.

점탄성유체의 압력측정용 벽공부근의 유동모양에 관한 실험적 연구 (An Experimental Study on the Flow Pattern in the Vicinity of Pressure Measuring Hole of the Viscoelasitc Fluids)

  • 김춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.23-31
    • /
    • 1980
  • The fluid static pressure has been generally measured by means of a small hole leading to a measuring instrument. In case of viscoelastic fluids, however, it has been shown experimentally that a systematic error exists in measuring the static pressure by means of the small hole becuase viscoelasitc fluids have many properties that can not be observed in Newtonian fluids. In this paper, in order to examine the mechanism of the errors in measuring the static pressure of viscoelasitc fluids, flow patterns in the vicinity of static pressure measuring hole were photographically taken and observed graphically. The experiments to take photographs of flow patterns were performed by a parallel plate channel with the steady two-dimensional shear flow of viscoelastic fluids. Results of the experiment are classified as following three regions; (1) Arched symmetrical flow pattern region. (2) Asymmetrical flow pattern region. (3) Rectilinear symmetricl flow pattern region.

  • PDF

Numerical study of flow of Oldroyd-3-Constant fluids in a straight duct with square cross-section

  • Zhang, Mingkan;Shen, Xinrong;Ma, Jianfeng;Zhang, Benzhao
    • Korea-Australia Rheology Journal
    • /
    • 제19권2호
    • /
    • pp.67-73
    • /
    • 2007
  • A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and ${\mu}$, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of the secondary flow, which has never been reported, is shown in the present work. The reason for the changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.

Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder

  • Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.27-37
    • /
    • 2009
  • In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in flows past a single rotating cylinder for rotational rates $0{\leq}{\alpha}{\leq}5$ (the rotational rate ex is defined by the ratio of the circumferential rotating velocity to free stream velocity) at Re=100, in which the vortex shedding has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For $0{\leq}{\alpha}{\leq}1.8$, the frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow disappears at lower ${\alpha}$ than the Newtonian case. At ${\alpha}$=5, the relationship between the frequency of vortex shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around Wi=0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for viscoelastic fluids than Newtonian fluids.

점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구 (An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow)

  • 유상신;황태성;엄정섭
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1189-1196
    • /
    • 1988
  • 본 연구에서는 내경이 각각 8.5mm와 10.3mm이며 무차원길이가 각각 710과 1158인 두 개의 시험관을 사용하는 유동장치를 제작하여 시험관 입구에서부터 유체역 학적 경계층(hydrodynamic boundary layer)과 열적 경계층(thermal boundary layer)이 동시에 발달하기 시작하는 경계조건을 형성하고 관벽에서 일정한 열 플럭스(constant heat flux)를 발생하는 조건을 부여하였다. 퇴화현상(degradation)에 대하여 비교적 안정성을 가진 폴리아크라마이드(polyacrylamide) Separan Ap273을 수도물에 용해하여 제조한 폴리머용액으로 유동특성과 열전달특성을 실험하여 열적입구길이와 열전달특성 을 규명하고자 한다.

THE STABILITY IN AN INCLINED LAYER OF VISCOELASTIC FLUID FLOW OF HYDROELECTRIC NATURAL CONVECTION

  • El-Bary, A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.17-27
    • /
    • 2005
  • The problem of the onset stability in an inclined layer of dielectric viscoelastic fluid (Walter's liquid B') is studied. The analysis is made under the simultaneous action of a normal a.c. electric field and the natural convection flow due to uniformly distributed internal heat sources. The power series method used to obtain the eigen value equation which is then solved numerically to obtain the stable and unstable solutions. Numerical results are given and illustrated graphically.

  • PDF

A phenomenological approach to suspensions with viscoelastic matrices

  • Tanner Roger I.;Qi Fuzhong
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.149-156
    • /
    • 2005
  • A simple constitutive model for viscoelastic suspensions is discussed in this paper. The model can be used to predict the rheological properties (relative viscosity and all stresses) for viscoelastic suspensions in shear and elongational flow, and the constitutive equations combine a 'viscoelastic' behaviour component and a 'Newtonian' behaviour component. As expected, the model gives a prediction of positive first normal stress difference and negative second normal stress difference; the dimensionless first normal stress difference strongly depends on the shear rate and decreases with the volume fraction of solid phase, but the dimensionless second normal stress difference (in magnitude) is nearly independent of the shear rate and increases with the volume fraction. The relative viscosities and all the stresses have been tested against available experimental measurements.

Advances in measuring linear viscoelastic properties using novel deformation geometries and Fourier transform techniques

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • 제13권2호
    • /
    • pp.67-81
    • /
    • 2001
  • The development of new techniques for the dynamic measurement of linear viscoelastic properties is an active area of rheometry, and this paper surveys some novel deformation geometries which have been recently reported e.g. oscillating probe-type devices which are imbedded in or placed on the surface of the sample. Small amplitude band-limited pseudorandom noise is used for the displacement signal, with Fourier analysis of the complex waveform of the resistance force yielding the frequency dependent viscoelastic material functions (e.g. storage and loss moduli G", G"). Theoretical calculations of the fundamental equations relating force to displacement and instrument geometry, were carried out with the aid of the correspondence principle of linear viscoelasticity. The rapidity of the tests and flexibility in terms of sample preparation and stiffness mean that this basic technique should find many applications in rheometry. Three examples of oscillatory tests are presented in detail squeeze flow, imbedded needle and concentric sliding cylinder geometries.eometries.

  • PDF