Computer Simulation of Viscoelastic Flow in a Capillary Die for Rubber Compounds

모세관 다이에서 고무 복합체의 점탄성 거동에 대한 컴퓨터 모사

  • 박동명 (한국타이어 중앙연구소) ;
  • 김학주 (한국타이어 중앙연구소) ;
  • 윤재룡 (한국타이어 중앙연구소) ;
  • 류민영 (서울산업대학교 금형설계학과)
  • Published : 2006.12.30

Abstract

Rubber compounds have a high viscoelastic property. One of the viscoelastic behaviors during profile extrusion is the swelling of extrudate, and the amount of swelling varies with operational conditions in extrusion. It is well recognized that the elastic portion in the viscoelastic property plays an important role in the extrudate swell. In this study computer simulation of the die swell at the capillary die for several rubber compounds has been performed using commercial CFD code, Polyflow. A non-linear differential viscoelastic model, Phan-Thien-Tanner (PTT) model, was used in the computer simulation. Non-isothermal behavior was considered in the calculation. Distribution of pressure, velocity and temperature in the reservoir and capillary die, and extrudate profiles were predicted through the simulation. The amount of the die swell fur the different rubber compounds was investigated for various flow rates and three types of length to diameter of the capillary die. It is concluded that the PTT model successfully represented viscoelastic behavior of rubber compounds.

고무복합체는 높은 점탄성 성질을 보이는데 압출성형 시 이 점탄성 성질 때문에 압출물이 팽창하게 된다. 그리고 팽윤양은 공정 조건에 따라서 변한다. 점탄성 성질에서 탄성 부분은 압출물의 팽창에 있어서 중요한 역할을 한다. 본 논문은 모세관 다이에서 여러 가지 고무복합체에 따른 다이팽윤을 알아보기 위해 상용 CFD 프로그램인 Polyflow를 사용하여 해석을 수행하였다. 컴퓨터 모사에서는 비선형 미분 점탄성 모델인 Phan-Thien-Tanner(PTT) 모델을 사용하였고 온도를 고러하여 해석하였다. 해석을 통해서 레저버와 모세관 다이에서 압출물의 압력, 속도, 그리고 온도 분포 등을 예측하였다. 여러 가지 고무 복합체의 다이 팽윤양을 알아보기 위해서 유량과 모세관 다이의 지름을 변경하면서 연구하였다. 본 연구를 통해서 PPT 모델은 고무 복합체에 대한 점탄성 거동을 잘 표현하고 있음을 확인할 수 있었다.

Keywords

References

  1. N. Sombatsompop and R. Dangtangee, 'Effects of the Actual Diameters and Diameter Ratios o+D5f Barrels and Dies on the Elastic Swell and Entrance Pressure Drop of Natural Rubber in Capillary Die Flow', J. Appl. polym. Sci., 86, 1762 (2002) +D5 https://doi.org/10.1002/app.11212
  2. N. Sombatsompop and R. Dangtangee, 'Flow Visualization and Extrudate Swell of Natural Rubber in a Capillary Rheometer: Effect of Die/Barrel System', J. Appl. Polym. Sci., 82, 2525 (2001) https://doi.org/10.1002/app.2103
  3. C. D. Han, 'Rheology in Polymer Processing', Academic Press, NY (1976)
  4. B. Yang and L. J. Lee, 'Process Control of Profile Extrusion Using Thermal Method. Part I: Mathematical Modeling and System Analysis', Polym. Eng. Sci., 28, 697 (1988) https://doi.org/10.1002/pen.760281102
  5. B. Yang and L. J. Lee, 'Process Control of Profile Extrusion Using Thermal Method. Part II: Closed Loop Control', Polym. Eng. Sci., 28, 708 (1988) https://doi.org/10.1002/pen.760281103
  6. E. B. Rabinovitch and J. G. Quisenberry, 'Shrinkage in Rigid PVC Profile Extrusion', Vinyl Tech., 10, 200 (1988) https://doi.org/10.1002/vnl.730100408
  7. P. Hurez and P.A Tanguy, 'A New Design Procedure for Profile Extrusion Dies', Polym. Eng. Sci., 36, 626 (1996) https://doi.org/10.1002/pen.10450
  8. M. A. Huneault, P. G. Lafleur, and P. J. Carreau, 'Extrudate Swell and Drawdown Effects on Extruded Profile Dimensions and Shape', Polym. Eng. Sci., 30, 1544 (1990) https://doi.org/10.1002/pen.760302309
  9. J.-P. Pan, P.- Y. Wu, and T.-J. Liu, 'Extrusion Die Design for Slowly Reacting Materials', Polym. Eng. Sci., 37, 856 (1997) https://doi.org/10.1002/pen.11728
  10. P. Hurez and P.A Tanguy, 'Numerical Simulation of Profile Extrusion Dies without Flow Separation', Polym. Eng. Sci., 33, 971 (1993) https://doi.org/10.1002/pen.760331506
  11. Polyflow V. 3.9, Polymat manual, Fluent Co. (2002)
  12. Polyflow V. 3.9, User's manual, Fluent Co. (2002)
  13. J. L. White, 'Principles of Polymer Engineering Rheology', John Wiley & Sons, NY (1990)
  14. R. B. Bird, R. C. Armstrong, and O. Hassager, 'Dynamics of Polymeric Liquids', Vol. 1, 2nd Ed., John Wiley & Sons, NY (1987)