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Abstract

A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the
traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids
through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and
M, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of
the secondary flow, which has never been reported, is shown in the present work. The reason for the
changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation
of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.
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1. Introduction

Non-rectilinear flows of viscoelastic fluids in straight
pipes of arbitrary cross-section have attracted considerable
attention in the literature of Tanner (1988) and Huilgol &
Phan-Thien (1986) because of the pathlines of such flow
could not be straight, which was first found by Ericksen
(1956) in the research of Reiner-Rivlin fluid flow. His
study also indicated that when the cross-section of the pipe
is circular or the apparent viscosity and the normal stress
functions satisfy certain relationships, the pathlines will be
straight again. Green and Rivlin (1956} predicted the sec-
ondary flow of Reiner-Rivlin fluid flow through a straight
pipe with elliptic cross-section. Then Langlois and Rivilin
(1963) extended this work for a more general class of flu-
ids.

From then on, lots of computational and experimental
studies have been carried out on the secondary flows in
straight pipes with square and rectangular cross-sections.
Dodson et al. (1974) reported eight vortices and discussed
the effect of second normal stress difference on the sec-
ondary flows. Townsend ef al. (1976) extended the work
and indicated that the first normal stress difference also
affects the secondary flows. Gervang & Larsen (1991) pro-
vided a more complete description of secondary flows in
ducts of aspect ratios up to 16. All of the researches above
used the CEF (Criminale-Ericksen-Filbey) fluid (1957)
constitutive equation. More recently, Xue et al. (1995)
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investigated MPPT (modified Phan-Thien-Tanner) flow, a
more general class of viscoelastic model, by using implicit
finite volume method. The secondary flows were discussed
carefully in Xue’s work.

As the Oldroyd-type fluids are the one of the most
widely used viscoelastic fluids, there are much more stud-
ies on the simple Oldroyd-type fluids flow than the flow of
complex Oldroyd-type fluids, such as Fan er al. (2001) and
Chen et al. (2006). In this paper, we show the Oldroyd-3-
Constant fluid flow through a straight duct with square
cross-section. An amusing sixteen vortices pattern of the
secondary flow is shown in the present work, which has
never been reported. In order to discover the nature of the
secondary flow, the secondary flow and normal stress dif-
ferences are discussed carefully. The finite volume method
is used in the present work to obtain the results of the flow
structure and normal stress, which has been applied suc-
cessfully in many viscoelastic flow researches such as Hu
& Joseph (1990), Na & Yoo (1991), Yoo & Na (1991) and
Darwish er al. (1992).

2. Governing equations and numerical method

Fig. 1 shows the geometry and the coordinate system.
The coordinates are Cartesian coordinates (x*, y*, z*) with
Z" axis as the axis of the pipe. The velocities in the direc-
tions of x*, y*, " are denoted by u", v*, w", respectively.

We consider fully developed, incompressible and iso-
thermal steady flow of a viscoelastic fluid. The continuity
and momentum equations are

V' =0, (D
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Fig. 1. The geometry and the coordination of the present work.
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where u* is the velocity vector, p the density, and P, 7* are
the pressure and extra stress tensor, respectively. The con-
stitutive equation for viscoelastic fluids considered in the
present work is the Oldroyd-3-constant model proposed by
Phan-Thien & Huilgol (1985), in which the extra stress
tensor 7* can be written as

="+ 7, 3

where 7°" and 77" are defined by

\%
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D’ is the twice of the rate of deformation tensor which is
the symmetric part of the velocity gradient. The compo-
nents of D" relative to a Cartesian coordinate system are
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A is called the fluid relaxation time, &4 a dimensionless
parameter and 77, 7}, the viscosity contribution from the
solvent and the polymers, respectively. The symbol “V”
stands in Eq. (4) for the upper-convected derivative which,
for an arbitrary second-order tensor S’ relative to a Car-
tesian coordinate system, is

D
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If 4=0, the Oldroyd-3-constant equation reduces to the
Oldroyd-B constitutive equation, if 7, =0, the equation
reduces to the upper converted Maxwell constitutive equa-
tion, if A=0, it further reduces to the Newtonian consti-
tutive equation.

The dimensionless variables are defined as

Lu) (u) =g
(xy2) = s (uy,w) = P= 77W AR

(aP L/ R 7N
n a

77W 97" an

where W, is a characteristic velocity of the flow and 77is
the sum of 77, and 7. P is the non-dimensional pressure.
For fully developed flows, the velocity field is independent
of Z°, so consequently the axial component of the pressure
gradient dP’/d7" is a constant denoted as —G. Using the
definition of W, and P, the negative of the axial component
of the non-dimensional pressure gradient, dP/dz, takes the
value of 4. Re is the Reynolds number; We is the Weis-
senberg number. The dimensionless governing equations
for fully developed and impressible flow of Oldroyd-3-
constant fluid become

Vu=0 8)
Re(u-Viu=-VP+V-('+1"), C))
r’=nD, (10)

v
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For fully developed flows, all variables except P are
independent of z and are same in different cross-section, so
all of the variables are discretized and calculated in one
cross-section of the duct.

The boundary conditions are

w=0, ¥|.=ul.=v[.=0, (12)

where /"is the wall of the duct and yis the flow function,
defined as

u=—-0y/dy, v=0y/ox. (13)

A finite volume method (FVM) is based on the SIMPLE
(Semi-Implicit Method for Pressure Linked Equations)
algorithm as the pressure correction strategy and the tra-
ditional staggered mesh are used to solve the equations
above. The power-law scheme, suggested by Patanka
(1981), and the upwind scheme are employed to discretize
the momentum equations and the constitutive equations,
respectively. The discretized algebraic equations can be
solved easily by means of TDMA (Tridiagonal matrix
method). The details of the FVM, including SIMPLE and
TDMA, can be found in the books of Patankar (1980) and
Tao (2001), respectively. To make sure that the FVM
works well, comparisons are made with the solutions of the
Galerkin method. The 73, and 7, of Oldroyd-B fluid flow
in a straight duct obtained by present FVM as well as by
Xue’s Galerkin method (2002) are shown in Fig. 2. It’s
clear that the present results are in good agreements with
the ones of the Galerkin method.

3. Results and discussions

3.1. Secondary Flow
Fig. 3 shows the velocity vector field and streamlines of
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Fig. 2. Comparison with Galerkin method results when We =5, 7/7=0.2, Re = 50. (a) & (b) the results of 7°,, and 7°,, using FVM,

(c) & (d)the results of 7°,, and 7°,, using Galerkin method.
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Fig. 3. Velocity vector field and streamlines of secondary flow in cross-section when We =3, 7,/7=0.2 and Re = 50, with u: (a) 0.2;

(b) 0.28; (c) 0.3; (d) 0.42; (e) 0.5

secondary flow with different 4. In view of the symmetry,
the streamline of the secondary flows and the contour of
stresses are shown in only one quadrant of each pipe, in
which the lower right comer is the centre of the pipe.
For the case of small g, there are eight vortices in the
whole cross-section, which is similar to the secondary
flow of MPTT fluid flow reported by Xue er al
However, the directions of the vortices are totally dif-
ferent. It can be found in Fig. 3(b) that when x4 =0.28,
eight additional vortices emerge in the cross-section. The
direction of the each new additional vortex is opposite to
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the original one, respectively. The sixteen vortices pattern
of the secondary flow is a newly found phenomena which
has not been reported before. With 4 increasing, the new
vortices gradually dominate the secondary flow pattern,
and the original eight ones vanish. Fig. 4 indicates that the
same process is repeated when the We is increasing
instead of f.

The influence of two viscoelastic material parameters on
the strength of the secondary flows is illustrated in Fig. 5.
We take the maximum magnitude of velocity vector of the
secondary flows in the cross-section defined by
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Fig. 4. Velocity vector field and streamlines of secondary flow in cross-section when 73,/77= 0.2, Re = 50 and y = 0.2, with We: (a) 3;

() 3.5; (c) 4; (d) 4.3; (e) 5.
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Fig. 5. The V., vs. We with 4=0.2, 7/77=0.2 and Re =50.

Vo = Max(Ju> +%). (14)

As shown in Fig. 5, for small value of We, the increasing
We enhances the strength of the secondary flows. For We in
the range 1.8 to 3.6, the additional vortices are growing.
For the directions of the additional vortices are opposite to
the original ones as described above, the struggle of the
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Fig. 6. The V,, vs. 4 with We=3, 7/7=0.2 and Re = 50.

two groups of vortices decreases the secondary flow
strength. Then from about We = 3.7, it enhances the sec-
ondary flow again, for the new vortices totally dominate
the secondary flow. Comparing Fig. 6 with Fig. 5, one can
casily find that the effect of & on the strength of the sec-
ondary flow is similar to that of We. The two critical values
of y# are 0.12 and 0.30, respectively.
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Fig. 7. the distributions of second normal stress differences in cross-section when 77,/77= 0.2, Re =50 and x= 0.2, with We: (a) 1; (b)

3; (© 5.

(a)
Fig. 8. The contour of 82N2/6x6y in cross-section (=02, 77/171=0.2 and Re =50), with We: (a) 0.3; (b) 2.5; (c) 5.

3.2. Stress

As there are nearly no difference between the effect of
We and of i on the flow of Oldroyd-3-Constant fluid in a
straight square duct, the following discussion will only take
We into consideration and the same conclusions can also
apply to L.

In a simple shear flow with shear rate ¥, the second nor-
mal stress difference of Oldroyd-3-Constant model is
(15)

-2
Ny = 1,-7,, = un,Wey .

The second normal stress differences in straight square
duct flows with different We are illustrated in Fig. 7, which
indicates that N, for large We is much larger than that for
small We.

To investigate the relationship between secondary flow
patterns and stresses for fully developed flows of present
work, the equation of y deduced from the momentum
equation is introduced

R o Y2 )

8N2 82_72 Qz_x (16)
axay ox’> oy
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(c)

Fig. 8 and Fig. 9 show the contours of 9°N,/dxdy and

-o’t, /ax +9°1,,/9y" , respectively, which is the right side
terms of the Eq. (16). The balance in the shear stress vari-
ation occurs near the diagonals of cross-section, which
makes —9°7, /ax +0°T /ay antisymmetric about them. On
the other ha.nd, because of the antisymmetry of N,,
0°N,/dxdy is antisymmetric about diagonals of cross-sec-
tion, too. The increasing We or g diminishes the zero areas
of both -9°7,,/0x’+3’7,,/9y* and 9°N,/dxdy. That's why
the patterns in Flg. 8 and 9 are very similar. Eq. (16) indi-
cates that there are two terms which affect the secondary
flow, the second normal stress difference N, and the shear
stress 7, However, the absolute value of 9’N,/oxdy is much
larger than that of ' -, 10x’+9"7,,/3y" with any value of
We. In fact, 7,, has only httle contnbution to the secondary
flow, which is indicated by Fig. 9. So N, is the only term
to consider. As shown in Fig. 8(a), the points of extremum
of 9°N,/dxdy appear near the wall of the pipe. Then with
We increasing, two additional points of extremum appear at
the corner of the wall. The sign of the new one is opposite
to the original one near it. Finally, the two additional points
of extremum totally dominate the wall as shown in Fig.
8(c). It is variation of 9°N,/0xdy that causes the changes of
the pattern and strength of the secondary flow.
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(a)
Fig. 9. The contour of —3’7,,/9x’+3°7,,/dy" in cross-section (=02, 7/7=02 and Re=50), with We: (a) 0.3; (b) 2.5; (0) 5.

4. Conclusions

The fully developed flows of Oldroyd-3-constant fluid
through a duct with square cross-section are investigated
by finite volume method. The effects of viscoelastic para-

meters We and g on secondary flows are discussed in the

present work. We found that the contributions of the two
parameters to the secondary flow are just the same. Both of
them cause the changes of the pattern and the strength of
the secondary flow.

In the process of the increase of either We or g, the sec-
ondary flow pattern changes from eight vortices to sixteen
ones and then eight ones again, which is very interesting
and has never been reported before. However, the direc-
tions of the newcomers are opposite to the original ones at
the same position. In association with the struggle of the
two group vortices, the strength of the secondary flows is
changing.

At the end of the work, the origin of the changes of the
secondary flow is discussed. By analyzing the stream func-
tion equation and the contours of 0’N,/oxdy and
—azz;y/ax2+azz;y/8y2 in the cross-section, it is concluded
that the variation of 3°N,/0xdy causes the changes of the
pattern and strength of the secondary flow.

Nomenclature

a half of the length of side of cross-section
D symmetric part of the velocity gradient
G axial gradient of w, G = dw/0s

N, second normal stress differece

p

pressure
Re  Reynolds number, Re = paWy/n
u vector of velocity

u, v, w physical velocity components

W, characteristic temperature, W, = Ga’/4n
We  Weissenberg number, AWy/a

x,y radial direction coordinates

z axial direction coordinates
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Greek symbols

7., 1, solvent viscosity and polymeric contribution to the
viscosity

n sum of 7, and 77,

A relax time

P density of the fluid

T extra stress tensor

v stream function

] a dimensionless parameter of constitutive equations

'}/ shear rate

Subscripts and superscipts

’ dimensional variable

max maximum value

\% upper-convected derivative
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