• 제목/요약/키워드: virus resistance

Search Result 441, Processing Time 0.022 seconds

Review on the development of virus resistant plants in Alstroemeria

  • Park, Tae-Ho;Han, In-Song;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.370-378
    • /
    • 2010
  • This review describes the stratagies of development of virus-resistant Alstroemeria plants using the genetic modification system. Despite of increasing of its importance in cut flower market, improvements of some horticultuirally important traits such as fragrance, long vase-life, virus resistance and tolerance against abiotic stresses are lack of the breeding program in Alstroemeria. Of these traits, virus-resistance is quite difficult to develop in Alstroemeria plants due to the limitations of genetic variation in the existed germplasm. To extend the genetic variation, plant biotechnological techniques such as genetic transformation and tissue culture should be combined to develop virus-resistant line in Alstroemeria. In this review, several strategies for the generation of virus-resistance by using natural resistance genes, pathogen-derived genes and other sources including pathogen-derived proteins, virus-specific antibodies and ribosome-inactivating proteins are presented. Also, brief histories of breeding, tissue culture, and transformation system in Alstroemeria plants are described to inderstand of the application of transgenic approach for the development of virus-resistance in Alstroemeria species.

BREEDING TOBACCO (NICOTIANA TABACUM L.) RESISTANT TO POTATO VIRUS Y IN KOREA I. INHERITANCE OF RESISTANCE TO POTATO VIRUS Y OF FLUE-CURED TOBACCO VARIETY MCNAIR 30 (연초 (Nicotiana tabacum L.) 감자바이러스Y 저항성 품종육성 I. 황색종 품종 McNair30의 감자바이러스Y 저항성유전)

  • 정윤화;정석훈;금완수;최상주;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.6 no.2
    • /
    • pp.185-189
    • /
    • 1984
  • To classify the inheritance of resistance to potato virus Y, crosses between susceptible flue-cured tobacco variety NC 95 and resistant variety McNair 30 were conducted. The parents, $F_1$ plants, $F_2$ populations, and haploid plants derived from anthers of $F_1$ plants were screened for a resistance of two potato virus Y strains (PVY-VB and PVY-VN) isolated in Korea. The Chi-square values for the $F_3$ populations and haploids of $F_1$ fitted 1 :3 and 1 :1 ratios of resistant to susceptible for two strains, respectively. Therefore, it was found that the resistance of McNair 30 for the potato virus Y was controlled by a single recessive gene. Moreover the resistance to two strains screened was inherited dependently.

  • PDF

Production of transgenic Alstroemeria plants containing virus resistance genes via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.164-171
    • /
    • 2020
  • Transgenic Alstroemeria plants resistant to Alstroemeria mosaic virus (AlMV) were generated through RNA-mediated resistance. To this end, the friable embryogenic callus (FEC) of Alstroemeria was induced from the leaf axil tissue and transformed with a DNA fragment containing the coat protein gene and 3'-nontranslated region of AlMV through an improved particle bombardment system. The bar gene was used as a selection marker. More than 300 independent transgenic FEC lines were obtained. Among these, 155 lines resistant to phosphinothricin (PPT) were selected under low stringent conditions. After increasing the stringency of PPT selection, 44 transgenic lines remained, and 710 somatic embryos from these lines germinated and developed into shoots. These transgenic shoots were then transferred to the greenhouse and challenged with AlMV. In total, 25 of the 44 lines showed some degree of resistance. PCR analysis confirmed the presence of the viral sequence. Virus resistance was observed at various levels. Establishment of an efficient transformation system for Alstroemeria will allow inserting transgenes into this plant to confer resistance to viral and fungal pathogens. Accordingly, this is the first report on the production of a transgenic virus-resistant Alstroemeria and lays the foundation for alternative management of viral diseases in this plant.

Resistance to Viruses of Potato and their Vectors

  • Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.248-258
    • /
    • 2012
  • Potato (Solanum tuberosum) is one of the most important food crops worldwide and yields of potato can be affected by virus infection. While more than 40 viruses have been found in potato, only nine viruses (potato leafroll virus, potato viruses A, M, S, V, X and Y, potato moptop virus and tobacco rattle virus) and one viroid (potato spindle tuber viroid) have a significant economic impact on potato, worldwide. This review describes the geographical distribution of the most important viruses infecting potato and the genes for resistance or tolerance that have been identified against these various infectious agents. In some cases such resistance genes have been found only in other Solanum species. Few genes for resistance to the vectors of these viruses have been obtained and even fewer have been deployed successfully. However, transgenic resistance in potato has been achieved against seven of these disease agents.

Resistance to Turnip Mosaic Virus in the Family Brassicaceae

  • Palukaitis, Peter;Kim, Su
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.1-23
    • /
    • 2021
  • Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.

Inheritance of Resistance to Potato Virus Y Vein- necrosis Strain of N. africana (N. africana의 감자바이러스Y 엽맥괴저 계통에 대한 저항성의 유전)

  • 금완수;정윤화;정석훈;최상주;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.48-51
    • /
    • 1991
  • A program was initiated to transfer potato virus Y vein-necrosis strain resistance from N. africana to N. tabacum The Fl plants between the above species were self-sterile, but all amphidiploid plants from the Fl plants and backcrossed flowers, that is, the N. tabacum flowers crossed with amphidiploid were self-fertile. The parent, amphidiploid plants of Fl, F2 population of the amphidiploid and the backcrossed generation were screened for a resistance of potato virus Y vein-necrosis strain isolated in Korea. The Chi-square values for the F2 population of the amphidiploid and the backcrossed generation fitted 35: 1 and 5 : 1 ratios of resistant to susceptible for the potato virus Y vein-necrosis strain, respectively. Therefore, it was found that the resistance of N. tabacum for the potato virus Y vein-necrosis strain was controlled by a single dominant gene.

  • PDF

Studies on the Flacherie and Densonucleosis Virus in the Silkworm, Bombyx Mori L. II. Resistance to Flacherie and Densonucleosis Virus in the Parantal Lines of the Leading Silkworm Varieties in Korea. (가잠의 바이러스성 연화증에 관한 연구 II. 장려잠품종의 원종에 대한 저항성 검정)

  • Kim, Gwon-Yeong;Gang, Seok-Gwon;Lee, Jae-Chang
    • Journal of Sericultural and Entomological Science
    • /
    • v.28 no.2
    • /
    • pp.48-51
    • /
    • 1986
  • Resistance to the flacherie virus(FV) and the densonucleosis virus(DNV) of 10 Japanese lines and 10 Chinese lines used for hybrids was tested and the results obtained are as follows ; 1. Hansang #1 showed the highest resistance to the FV among the tested Japanese lines whereas Mudeung was of lowest resistance. In Chinese lines tested on the resistance to the FV, Jam118 was the highest while Jam 116 was the lowest. 2. In Japanese lines tested on the resistance to the DNV, it was shown that Jam 117, Gyeongchy, Mudeung, Hansaeng #1 and Hansaeng #3 were of the complete resistance but Jam 115 showed the lowest resistance. On the other hand, all the Chinese lines tested showed the complete resistance to the DNV.

  • PDF

Study on Inheritance of Potato virus X Resistance in Capsicum annuum

  • Shi, Jinxia;Choi, Do-Il;Kim, Byung-Dong;Kang, Byoung-Cheorl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.433-438
    • /
    • 2008
  • Potato virus X (PVX) resistance in potato is one of the best-characterized resistance models, however little is known in pepper. To evaluate the resistance to PVX in Capsicum annuum, a total of eleven pepper accessions were used for resistance screening against two PVX strains, USA and UK3. None of them were resistant against strain UK3, whereas four resistant genotypes were found against strain USA, three of which were further characterized. Two unlinked dominant genes were identified for both genotypes Bukang and Perennial; resistance in the genotype CV3 seemed to be conferred by two complementary dominant genes. These results demonstrated that the resistance to PVX in C. annuum is different from that in potato. This is the first report on genetic analysis of PVX resistance in C. annuum.

Virus-Resistance Analysis in Transgenic Tobacco Expressing Coat Protein Gene of Cucumber Mosaic Virus (오이모자이크바이러스 외피단백질유전자 발현 담배의 바이러스 저항성 분석)

  • 손성한;김경환;박종석;황덕주;한장호;이광웅;황영수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 1997
  • Cucumber mosaic virus (CMV) leads to a cause of poor crop productivity and quality. To solve this problem, we attempted to develop a virus-resistance tobacco plants by using viral coat protein (CP) gene. Transgenic tobacco plants expressing CMV CP gene were analysed by the resistance upon CMV infection. The virus-resistance was measured in $\textrm{T}_{1}$, generation by the inhibition of plant growth and the expression of the mosaic symptoms infected with CMV. The transgenic lines were divided into four groups: highly resistant, resistant, moderate and susceptible based on their growth and symptom severity. Out of 39 transgenic lines, 16 lines showed significant virus-resistance. And of resistant lines, 2 lines were designated highly resistant based on the facts that they achieved similar plant height to that of non-infected tobacco plants and showed lower disease symptom than that of other lines. The steady state level of CP RNA and coat protein level were measured by northern blot and immunoblot analysis. The CP RNA was highly accumulated in most resistant and moderate lines but barely detected in susceptible lines. The coat protein was detected in most lines regardless of their resistance to CMV. from this result, virus-resistance appeared to correlate more with CP RNA level than the level of coat protein. However, in two highly resistant lines, CP RNA level was unexpectedly low. This unexpected phenomenon need to be further investigated.

  • PDF

Identification and Sequence Analysis of RNA3 of a Resistance-Breaking Cucumber mosaic virus Isolate on Capsicum annuum

  • Lee Mi-Yeon;Lee Jang-Ha;Ahn Hong-Il;Yoon Ju-Yeon;Her Nam-Han;Choi Jang-Kyung;Choi Gug-Seon;Kim Do-Sun;Harn Chee-Hark;Ryu Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.265-270
    • /
    • 2006
  • Cultivated hot pepper crops showing severe mosaic symptom were found in Korea in 2004 and their causal agent was identified as Cucumber mosaic virus (CMV). These pepper crops was resistant to the virus in the filled, and they belonged to pathotype 0 (P0) resistant pepper. Resistance screening of selected pepper plants showed that a pepper isolate of CMV was the P0 resistance-breaking virus. This P0 resistance-breaking isolate of CMV, named as Ca-P1, was isolated from leaves of the virus-infected Capsicum annuum cv. Manidda that showed systemic severe mosaic symptom. Ca-P1-CMV could induce systemic mosaic symptoms on P0-susceptible (P0-S) and P0-resistant (P0-R) cultivars whereas an ordinary strain (Fny-CMV) could not infect P0-R. This result suggests that Ca-P1-CMV can overcome P0 resistant pepper cultivars. To analyze its genome sequence, the complete nucleotide sequence of RNA3 of Ca-P1-CMV was determined from the infectious full-length cDNA clone of the virus. RNA3 of Ca-P1-CMV consisted of 2,219 nucleotides. Overall sequence homology of RNA3-encoded two viral proteins (movement protein and coat protein) revealed high similarity (75.2-97.2%) with the known CMV strains. By sequence analysis with known representative strains of CMV, Ca-P1-CMV belongs to a typical member of CMV subgroup IB. The resistance and resistance-breaking mechanisms of pepper and counterpart CMV, respectively, remain to be investigated, which will enrich the genetic resources and accelerate CMV-resistant pepper breeding programs.