• Title/Summary/Keyword: virus entry

Search Result 73, Processing Time 0.033 seconds

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

Co-expression of IRES-mediated hG-CSF cDNA and hGH Gene under the Control of Goat beta-Casein Promoter

  • Oh, Keon-Bong;Lee, Chul-Sang
    • Development and Reproduction
    • /
    • v.14 no.1
    • /
    • pp.13-19
    • /
    • 2010
  • We developed a novel dicistronic system for the expression of target cDNA sequences in the milk of transgenic animals using goat beta-casein/hGH fusion construct, pGbc5.5hGH (Lee, 2006) and internal ribosome entry site (IRES) sequences of encephalomyocarditis virus (EMCV). Granulocyte colony-stimulating factor (hG-CSF) cDNA was linked to 3' untranslated region of hGH gene in the pGbc5.5hGH via EMCV IRES sequences. Transgenic mice were generated by microinjection and transgene expression was examined in the milk and mammary gland of transgenic mice at 10 days of lactation. Northern blot analysis showed that hGH gene and hG-CSF cDNA were transcribed as a single dicistronic mRNA. The hG-CSF and hGH proteins were independently translated from the dicistronic mRNA and secreted into the milk of transgenic mice. The highest concentration of hG-CSF and hGH in the milk of transgenic mice were $237{\mu}g/m{\ell}$ and $8,990{\mu}g/m{\ell}$, respectively. In contrast, another hG-CSF expression cassette, in which hG-CSF genomic sequences were inserted into a commercial milk-specific expression vector (pBC1), generated a lower level ($91{\mu}g/m{\ell}$) of hG-CSF expression in the milk of transgenic mice. These results demonstrated that the novel pGbc5.5hGH-based dicistronic construct could be useful for an efficient cDNA expression in the milk of transgenic animals.

The impact of COVID-19 on the male genital tract: A qualitative literature review of sexual transmission and fertility implications

  • Verrienti, Pierangelo;Cito, Gianmartin;Maida, Fabrizio Di;Tellini, Riccardo;Cocci, Andrea;Minervini, Andrea;Natali, Alessandro
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • The angiotensin-converting enzyme 2 receptor (ACE2) appears to be widely expressed in cells in the testes, predominantly in spermatogonia, Sertoli cells, and Leydig cells, and its co-expression with transmembrane protease serine 2 (TMPRSS2) is essential for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For this reason, the male reproductive system could be considered a potential target for SARS-CoV-2, as well as a possible reservoir of infection. However, to date, there is very little evidence about the presence of SARS-CoV-2 in semen and testicular samples. The aim of this paper was to review the current evidence regarding the impact of SARS-CoV-2 on male fertility and sexual health, with a particular focus on reproductive hormones, the presence of the virus in seminal fluid and testis, and its impact on fertility parameters. We found very limited evidence reporting the presence of SARS-CoV-2 in semen and testicular samples, and the impact of SARS-CoV-2 on reproductive hormones and fertility parameters is unclear. The quality of the examined studies was poor due to the small sample size and several selection biases, precluding definitive conclusions. Hence, future well-designed prospective studies are needed to assess the real impact of SARS-CoV-2 on male reproductive function.

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie Zhuang;Qianying Chen;Xiaoying Zhong;Huiqi Chen;Runjia Yu;Ying Tang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.291-301
    • /
    • 2023
  • Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

Antiviral effect of fucoxanthin obtained from Sargassum siliquastrum (Fucales, Phaeophyceae) against severe acute respiratory syndrome coronavirus 2

  • Nalae Kang;Seong-Yeong Heo;Eun-A Kim;Seon-Heui Cha;Bomi Ryu;Soo-Jin Heo
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.295-306
    • /
    • 2023
  • Human coronavirus diseases, particularly severe acute respiratory syndrome coronavirus 2, still remain a persistent public health issue, and many recent studies are focusing on the quest for new leads against coronaviruses. To contribute to this growing pool of knowledge and explore the available marine natural products against coronaviruses, this study investigated the antiviral effects of fucoxanthin isolated from Sargassum siliquastrum-a brown alga found on Jeju Island, South Korea. The antiviral effects of fucoxanthin were confirmed in severe acute respiratory syndrome coronavirus 2-infected Vero cells, and its structural characteristics were verified in silico using molecular docking and molecular dynamic simulations and in vitro colorimetric method. Fucoxanthin inhibited the infection in a concentration-dependent manner, without showing cytotoxicity. Molecular docking simulations revealed that fucoxanthin binds to the angiotensinconverting enzyme 2-spike protein (binding energy -318.306 kcal mol-1) and main protease (binding energy -205.118 kcal mol-1). Moreover, molecular dynamic simulations showed that fucoxanthin remains docked to angiotensin-converting enzyme 2-spike protein for 20 ns, whereas it breaks away from main protease after 3 ns. Also, the in silico prediction of the fucoxanthin was verified through the in vitro colorimetric method by inhibiting the binding between angiotensinconverting enzyme 2 and spike protein in a concentration-dependent manner. These results indicate that fucoxanthin exhibits antiviral effects against severe acute respiratory syndrome coronavirus 2 by blocking the entry of the virus. Therefore, fucoxanthin from S. siliquastrum can be a potential candidate for treating coronavirus infection.

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

The 1985 Survey on Horse Diseases of Veterinary Importance in Korea (주요 말 전염성 질병에 대한 국내 보유마필의 감염현황조사)

  • Rhee, Young-ok;An, Soo-hwan;Jeon, Young;Yoon, Yong-dhuk;Park, Bong-kyun;Heo, Young;Kim, Jong-man;Jang, Hwan;Kim, Yong-hee;Sul, Dong-sup;Song, Ji-bong;Jung, Jong-kee;Lee, Keun-hee;Kim, Hee-pa
    • Korean Journal of Veterinary Research
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 1986
  • The present surveys were conducted in attempts to investigate the health situation of horses in Korea through mass-screening the samples serologically, bacteriologically and clinically. A total of 575 horses were sampled randomly, comprising 126 from the Korean Horse Affairs Association, 288 from the Korean Equestrian Federation and 161 from the Jeju ponies. Each of the samples taken was tested for diagnoses of 18 horse diseases including African horse sickness. Summarised below are the results obtained from this surveys. 1. From results of the serological survey it is evident that Korea is currently free from African horse sickness, dourine, glanders, vesicular stomatits, equine piroplasmosis, equine viral arteritis, Venezuelan encephalomyelitis and contagious equine metritis. Constant vigilence with strengthened quarantine measures is thus vital for maintaining freedom of any those diseases in Korea. 2. No clinical case was observed with any of signs or symptoms of infectious lymphangitis, anthrax and infestations with ringworm, mange or scab. However, continuous follow-up is required for establishing the evidence of no occurrence of the diseases in Korea. 3. One case of seropositive to equine infectious anemia may fully justify systematic and regular testings for the whole population of horse in Korea. 4. It is manifested that equine rhinopneumonitis, Japanese encephalitis and Getah virus infection are well established in Korea, together with the presence of equine infectious abortion(Salmonella abortus equi). This strongly entails preventive precautions before entry into Korea for the horses participating in the 1986 Asian Games and the 1988 Seoul Olympics.

  • PDF

CCR5 deficiency in aged mice causes a decrease in bone mass

  • Oh, Eun-Ji;Zang, Yaran;Kim, Jung-Woo;Lee, Mi Nam;Song, Ju Han;Oh, Sin-Hye;Kwon, Seung Hee;Yang, Jin-Woo;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.173-181
    • /
    • 2019
  • The CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor that regulates chemotaxis and effector functions of immune cells. It also serves as the major co-receptor for the entry of human immunodeficiency virus (HIV). Recently, CCR5 inhibitors have been developed and used for the treatment or prevention of HIV infections. Additionally, it has been identified that CCR5 controls bone homeostasis by regulating osteoclastogenesis and the communication between osteoblasts and osteoclasts. However, the effects of CCR5 inhibition on bone tissue in elderly patients are unknown. This study aimed to examine the bone phenotype of aged CCR5 knockout (KO) mice. Femoral and tibial bones were isolated from 12-month and 18-month old wild-type (WT) and CCR5 KO mice, and microcomputed tomography and histology analyses were performed. Twelve-month-old CCR5 KO mice exhibited a decreased trabecular bone mass and cortical bone thickness in both femoral and tibial bones compared with age-matched WT mice. Eighteen-month-old mice also showed a decreased trabecular bone mass in femurs compared with control WT mice, but not in tibial bones. Unlike in 12-month-old mice, the cortical margin of femurs and tibias in 18-month-old mice were rough, likely because they were aggravated by the deficiency of CCR5. Overall, our data suggest that the deficiency of CCR5 with aging can cause severe bone loss. When CCR5 inhibitors or CCR5 inactivating technologies are used in elderly patients, a preventive strategy for bone loss should be considered.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

The Effect Analysis of COVID-19 vaccination on social distancing (코로나19 백신접종이 사회적 거리두기 효과에 미치는 영향분석)

  • Moon, Su Chan
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2022
  • The purpose of this study is to present an appropriate management plan as a supplement to the scientific evidence of the currently operated distancing system for preventing COVID-19. The currently being used mathematical models are expressed as simultaneous ordinary differential equations, there is a problem in that it is difficult to use them for the management of entry and exit of small business owners. In order to supplement this point, in this paper, a method for quantitatively expressing the risk of infection by people who gather is presented in consideration of the allowable risk given to the gathering space, the basic infection reproduction index, and the risk reduction rate due to vaccination. A simple quantitative model was developed that manages the probability of infection in a probabilistic level according to a set of visitors by considering both the degree of infection risk according to the vaccination status (non-vaccinated, primary inoculation, and complete vaccination) and the epidemic status of the virus. In a given example using the model, the risk was reduced to 55% when 20% of non-vaccinated people were converted to full vaccination. It was suggested that management in terms of quarantine can obtain a greater effect than medical treatment. Based on this, a generalized model that can be applied to various situations in consideration of the type of vaccination and the degree of occurrence of confirmed cases was also presented. This model can be used to manage the total risk of people gathered at a certain space in a real time, by calculating individual risk according to the type of vaccine, the degree of inoculation, and the lapse of time after inoculation.