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Human coronavirus diseases, particularly severe acute respiratory syndrome coronavirus 2, still remain a persistent 
public health issue, and many recent studies are focusing on the quest for new leads against coronaviruses. To contribute 
to this growing pool of knowledge and explore the available marine natural products against coronaviruses, this study in-
vestigated the antiviral effects of fucoxanthin isolated from Sargassum siliquastrum—a brown alga found on Jeju Island, 
South Korea. The antiviral effects of fucoxanthin were confirmed in severe acute respiratory syndrome coronavirus 2-in-
fected Vero cells, and its structural characteristics were verified in silico using molecular docking and molecular dynamic 
simulations and in vitro colorimetric method. Fucoxanthin inhibited the infection in a concentration-dependent man-
ner, without showing cytotoxicity. Molecular docking simulations revealed that fucoxanthin binds to the angiotensin-
converting enzyme 2-spike protein (binding energy -318.306 kcal mol-1) and main protease (binding energy -205.118 kcal 
mol-1). Moreover, molecular dynamic simulations showed that fucoxanthin remains docked to angiotensin-converting 
enzyme 2-spike protein for 20 ns, whereas it breaks away from main protease after 3 ns. Also, the in silico prediction of 
the fucoxanthin was verified through the in vitro colorimetric method by inhibiting the binding between angiotensin-
converting enzyme 2 and spike protein in a concentration-dependent manner. These results indicate that fucoxanthin 
exhibits antiviral effects against severe acute respiratory syndrome coronavirus 2 by blocking the entry of the virus. There-
fore, fucoxanthin from S. siliquastrum can be a potential candidate for treating coronavirus infection.
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ganisms also produce a wide range of structurally diverse 
compounds that act as a source of marine natural prod-
ucts for drug discovery (Khalifa et al. 2019, Lu et al. 2021). 
Especially, algae are rich sources in bioactive second-
ary metabolites and nutraceuticals such as carotenoids, 
polyphenols, and fatty acids with antioxidant, anti-in-
flammatory, antiviral, antibacterial, anti-obesity, atopic 
dermatitis regulation, and anticancer properties (Lee et 
al. 2021, 2022, Little et al. 2021, Menaa et al. 2021, Mihin-
dukulasooriya et al. 2022, Pradhan and Ki 2023, Thakuri 
et al. 2023). Moreover, many recent studies regarding on 
aquaculture technique of various algae have been pre-
sented to develop the industrial utility technology of algal 
natural products (Choi et al. 2021, Kim et al. 2021, Hwang 
et al. 2022, Jiksing et al. 2022).

Fucoxanthin is a xanthophyll, which is a subset of ca-
rotenoids, produced by brown algae. Fucoxanthin exhib-
its anti-cancer (Martin 2015, Satomi 2017), anti-obesity 
(Gammone and D’Orazio 2015, Muradian et al. 2015), and 
anti-diabetic properties (Maeda 2015). In particular, fuco-
xanthin isolated from Sargassum siliquastrum—a brown 
alga abundant in Jeju Island, South Korea—showed pro-
tective effects against UV-B-induced cell damage (Heo 
and Jeon 2009) and H2O2-induced oxidative stress (Heo 
et al. 2008) and also exhibited anti-inflammatory effects 
(Heo et al. 2012). However, no studies have yet been con-
ducted on the antiviral effect of fucoxanthin.

In this study, we investigated the antiviral effects of fu-
coxanthin isolated from S. siliquastrum to further explore 
the marine natural products available against coronavi-
rus. The antiviral effects of fucoxanthin were confirmed 
against SARS-CoV-2-infected Vero cells. Structural analy-
sis for the effects of fucoxanthin was fulfilled in a compu-
tational space and in vitro colorimetric method.

MATERIALS AND METHODS

Purification of fucoxanthin from Sargassum 
siliquastrum

Isolation and purification of fucoxanthin were carried 
out following a previous paper (Heo et al. 2012). In brief, 
S. siliquastrum, a brown alga, was collected along the 
Seongsan coast (33°27′32.9″ N, 126°56′31.2″ E) of Jeju Is-
land, South Korea. Fucoxanthin was purified from S. sili-
quastrum through a series of steps, including 80% MeOH 
extraction, CHCl3 partitioning, silica column chromatog-
raphy (silica gel, Merck, Darmstadt, Germany) Sephadex 
LH-20 column chromatography (Sephadex LH-20; Sigma 

INTRODUCTION

Human coronavirus diseases have repeatedly emerged 
since the beginning of the 21th century; for instance, the 
emergence of severe acute respiratory syndrome coro-
navirus (SARS-CoV) in 2002–2003, human coronavirus 
NetherLand 63 in 2004, HCoV-Hong Kong University 1 
in 2005, Middle East respiratory syndrome coronavirus 
(MERS-CoV) in 2011, and SARS-CoV-2 in 2019 (Liu et al. 
2021). Particularly, SARS-CoV-2 caused a global pandem-
ic with substantial morbidity and mortality—approxi-
mately 7,000,000 deaths were confirmed as of May 2023 
(World Health Organization [WHO], updated May 2023).

Although WHO no longer considers SARS-CoV-2 to be 
a Public Health Emergency of International Concern, vi-
ral infections still remain a persistent public health issue. 
Many studies concerned that the viral disease emergence 
such as re-emergence of SARS-CoV and MERS-CoV, and 
even the emergence of new viruses, is expected to accel-
erate and repeat (Totura and Bavari 2019, da Silva An-
tonio et al. 2020, Meganck and Baric 2021); these risks 
suggest the need to continue research on antiviral drug 
discovery against various viruses, including SARS-CoV-2.

SARS-CoV-2 spike protein attaches to angiotensin-con-
verting enzyme (ACE) 2 cellular receptor, and the virus 
enters the host cells and releases the genomic RNA. Im-
mediately, the genomic RNA is translated to open reading 
frame 1a and 1b, and the resulting polyproteins pp1a and 
pp1ab are processed into 16 nonstructural proteins such 
as the various enzymes and transcription factors. These 
nonstructural proteins form the viral replication and 
transcription complexes and operate the enzymatic func-
tions involved in RNA synthesis, RNA proofreading, and 
RNA modification. Also, translated structural proteins 
translocate into endoplasmic reticulum membranes, and 
the virion matures and finally secretes from the infected 
cell by exocytosis (Panda et al. 2020, Pandey et al. 2020, 
V’kovski et al. 2021, Kang et al. 2023).

Natural products include a plethora of compounds 
that can be used for the identification of novel leads and 
the development of new drug sources, because of their 
enormous scaffold diversity and structural complexity 
(Atanasov et al. 2021). Some plant-derived extracts and 
/ or compounds, such as the alkaloids morphine and co-
deine from poppy (Papaver somniferum), and atropine 
isolated from Atropa belladonna, have been widely used 
in the treatment of well-known diseases (Calixto 2019). 
Also, in the past 30 years, many studies have focused on 
marine ecosystems, a reservoir of about 250,000–500,000 
species of organisms, and revealed that the marine or-
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of the main proteins of SARS-CoV-2 were obtained from 
a Protein Data Bank (PDB; http://www.pdb.org). ACE2-
spike protein (PDB ID: 6LZG), main protease (Mpro) (PDB 
ID: 6LU7), and RNA-dependent RNA polymerase (RdRp; 
PDB ID: 7BV2), having a resolution of 2.50 Å, 2.16 Å, and 
2.50 Å, respectively, were selected. Structure prepara-
tion of these proteins was conducted using the prepare 
protein protocol of Discovery Studio 2022 (Biovia). Each 
binding site of the main protein was defined, depending 
on the current docking site of its ligand, following a previ-
ous paper (Jin et al. 2020, Wang et al. 2020, Yin et al. 2020).

Molecular docking of fucoxanthin to the main 
proteins of SARS-CoV-2

Molecular docking analysis was performed to assess 
the respective binding positions and binding energies of 
fucoxanthin to the main proteins of SARS-CoV-2: ACE2-
spike protein, Mpro, and RdRp. For this analysis, flexible 
docking based on the Chemistry at Harvard Macromolec-
ular Mechanics (CHARMM) and ‘Calculate Binding Ener-
gies’ tools of Discovery Studio 2022 (Biovia) were used. 
The binding site of the proteins and fucoxanthin were al-
lowed to move freely during the docking simulation. The 
docking positions of fucoxanthin on the main proteins 
were expressed as 3D crystal structures.

Molecular dynamic simulations of fucoxanthin 
complexes formed with the main proteins of 
SARS-CoV-2

To investigate the dynamic behavior of fucoxanthin–
main protein complexes, molecular dynamic (MD) sim-
ulations were conducted using Discovery Studio 2022 
(Biovia) based on the CHARMM force field. Each simu-
lation step was designed based on the previous study 
(Jadhav et al. 2018, Jayaraman et al. 2021, Kang et al. 
2023). The complex was solvated with explicit periodic 
boundary (orthorhombic box). Then, the solvated com-
plex was first minimized for 1,000 steps using the steep-
est descent algorithm, and second minimized for 2,000 
steps using adopted basis Newton-Raphson algorithm. 
And then, the minimized complex was heated for 100 ps 
at 300 K, equilibrated for 500 ps, and conducted produc-
tion and nanoscale MD for 20 ns in standard number of 
particles, volume, and temperature ensemble and in a 
standard number of particles, pressure, and temperature 
ensemble. The stability of each complex was assessed by 
computing the root-mean-square deviation (RMSD) and 
fluctuation over the entire simulation period.

Aldrich, Burlington, MA, USA), and reversed-phase high-
performance liquid chromatography system (Alliance 
2690; Waters Corporation, Milford, MT USA) (Supple-
mentary Figs S1 & S2). The structure of fucoxanthin was 
identified by comparing the nuclear magnetic resonance 
spectrum data with those in the existing literature (Sup-
plementary Figs S3 & S4). All solvents used were of ana-
lytical grade.

Virus and cells used

SARS-CoV-2 was provided by the Korea Centers for Dis-
ease Control and Prevention (KCDC; previously known 
as Korea Disease Control and Prevention Agency [βCoV/
KOR/KCDC03/2020]). Vero cell line was purchased from 
the American Type Culture Collection (ATCC; ATCC-
CCL81). Vero cells were cultured in Dulbecco’s modified 
Eagle’s medium supplemented with 10% heat-inactivat-
ed fetal bovine serum and 1× antibiotic-antimycotic so-
lution, and maintained at 37°C in a 5% CO2 incubator. 
SARS-CoV-2 was propagated in Vero cells. All in vitro 
experiments using SARS-CoV-2 were performed at the 
Institut Pasteur Korea, in compliance with the guidelines 
of the Korea National Institute of Health, using enhanced 
biosafety level 3 (BSL3) containment procedures in labo-
ratories approved for use by the KCDC.

Analysis of antiviral activity of fucoxanthin

All in vitro experiments using SARS-CoV-2 were per-
formed following a previous study (Jeon et al. 2020). Vero 
cells were seeded at 1.2 × 104 cells per well in black 384-
well μ Clear plates (Greiner Bio-One, Chonburi, Thai-
land). After 24 h, fucoxanthin solution of concentrations 
ranging from 0.1 to 50 μM were added to the cells and 
incubated for 1 h. Then, SARS-CoV-2 was added to the 
wells at a multiplicity of infection of 0.0125, in the BSL3 
containment facility. Antiviral activity was normalized to 
positive (mock) and negative (0.5% dimethyl sulfoxide) 
controls in each assay plate, and the values were mea-
sured in duplicate.

Preparation of 3D structure of fucoxanthin and 
the main proteins of SARS-CoV-2

For in silico studies, the 2D structure of fucoxanthin 
was obtained from PubChem (CID 5281239), and geome-
try optimization was performed using the prepare ligand 
and energy minimization protocols of Discovery Studio 
2022 (Biovia, San Diego, CA, USA). The crystal structures 
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by Dunnett’s multiple comparison test using GraphPad 
Prism software version 9 (GraphPad Software, San Di-
ego, CA, USA). Statistical significance was considered at  
p-values < 0.05 and 0.001.

RESULTS

Antiviral activity of fucoxanthin in SARS-CoV-2- 
infected Vero cells

Brown algae are known to be a good source of fucoxan-
thin; the antiviral activity of fucoxanthin derived from S. 
siliquastrum is shown in Fig. 1. Fucoxanthin inhibited the 
infection in a concentration-dependent manner, without 
showing any cytotoxicity. Fucoxanthin exhibited an inhi-
bition rate of 61.45 ± 4.12% at 50 μM concentration.

Molecular docking of fucoxanthin to the main 
proteins of SARS-CoV-2

Molecular docking analysis of fucoxanthin was car-
ried out by targeting the important main proteins in viral 
life cycle including ACE2-spike protein (viral entry), Mpro 

In vitro ACE2-spike protein binding inhibition 
effect

ACE2-spike protein inhibition effect of fucoxanthin 
was measured by using a SARS-CoV-2 S1 Protein-ACE2 
Binding Inhibitor screening assay kit (Abcam PLC, Cam-
bridge, UK) following the instructions in the enclosed 
user manuals. Briefly, 50 µL of fucoxanthin was added 
to the S1 protein-coated microplate for 30 min, and then 
50 µL of the diluted biotinylated human ACE2 was mixed 
and incubated for 2 h. And then 100 µL of the diluted 
streptavidin-HRP was added to all of the wells and then 
incubated for 1 h. After incubation, 100 µL of TMB sub-
strate was added to all wells and incubated for 20 min. 
Finally, 100 µL of stop solution was added to all wells, and 
the absorbance of each well was measured at 450 nm us-
ing Multiskan Go microplate reader (Thermo Fisher Sci-
entific, Waltham, MA, USA).

Statistical analysis

All in vitro data were represented as the mean ± stan-
dard deviation of three determinations. The statistical 
comparison was assessed by one-way ANOVA followed 

Fig. 1. Antiviral activity of fucoxanthin derived from Sargassum siliquastrum in severe acute respiratory syndrome coronavirus 2-infected Vero 
cells. (A) Structure of fucoxanthin. (B) Cytotoxicity of fucoxanthin. (C) Inhibition effects of fucoxanthin. The results are expressed as mean ± stan-
dard deviation (n = 3). *p < 0.05, ***p < 0.001 vs. fucoxanthin (12.5 μM)-treated cells.

C

A

B



Kang et al.   Anti-SARS-CoV-2 Activity of Fucoxanthin

299 http://e-algae.org

Fig. 2. Molecular docking analysis of fucoxanthin to the main proteins of severe acute respiratory syndrome coronavirus 2. Whole structure (A) 
and binding site pose (B) of the fucoxanthin-angiotensin-converting enzyme 2 (ACE2)-spike protein complex. Whole structure (C) and binding 
site pose (D) of the fucoxanthin-main protease complex. Binding energies of the fucoxanthin-main protein complexes (E). Mpro, main protease; 
RdRp, RNA-dependent RNA polymerase.
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Fig. 3. Molecular dynamics simulation of the fucoxanthin-angiotensin-converting enzyme 2 (ACE2)-spike protein complex (A) and the fucoxan-
thin-main protease complex (B). Total energies of the fucoxanthin-ACE2-spike protein complexes (C) and the fucoxanthin–main protease com-
plexes (D) during the simulation.
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B
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protein was performed by facilitating interactions with 
the binding site between ACE2 and the spike protein. The 
binding surface of the ACE2-spike protein was expressed 
by hydrogen bonds (Fig. 2A). The fucoxanthin-ACE2-spike 
protein complex displayed a favorable hydrogen bond 
with the donor (represented by the pink section) and the 
acceptor (represented by the green section) regions (Fig. 
2A). The binding position of the fucoxanthin–ACE2-spike 
protein complex revealed a network of pi-alkyl bonds 
between the following residues: His34 (on ACE2), and 
TYR449, TYR453, and TYR495 (on spike protein) (Fig. 2B).  

(processing polyproteins), and RdRp (replication of RNA) 
(Panda et al. 2020, Pandey et al. 2020, V’kovski et al. 2021, 
Kang et al. 2023). Results of molecular docking of fuco-
xanthin to the main proteins of SARS-CoV-2 are shown in 
Fig. 2. Fucoxanthin is displayed as a stick model and the 
main proteins of SARS-CoV-2, including ACE2-spike pro-
tein and Mpro, are displayed as solid ribbon models (Fig. 
2A & C), as well as line models (Fig. 2B & D). Each binding 
site of fucoxanthin to the main proteins is shown in an ac-
ceptor–donor system (Fig. 2A & C).

Molecular docking of fucoxanthin to the ACE2-spike 

A

C D

B

Fig. 4. Root-mean-square deviation (RMSD) plots of the conformations of the fucoxanthin-angiotensin-converting enzyme 2 (ACE2)-spike pro-
tein complex (A) and the fucoxanthin-main protease complex (B) during simulation. Non-bond interactions of the fucoxanthin-ACE2-spike pro-
tein complex (C) and the fucoxanthin-main protease complex (D) during simulation. 
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mentary Table S2). These MD simulation results indicated 
that fucoxanthin could form strong and stable complexes 
with the ACE2-spike protein, but not with Mpro.

In vitro analysis of ACE2-spike protein binding 
inhibition effect of fucoxanthin

To confirm the molecular docking and simulation pre-
diction results on the fucoxanthin–ACE2-spike protein 
complex, in vitro ACE2-spike protein binding inhibition 
effect of the fucoxanthin was evaluated. The fucoxanthin 
inhibited the binding between ACE2 and spike protein 
in a concentration-dependent manner with the range of 
50–400 µM, and the IC50 value were calculated to be 122.2 
± 1.87 µM (Fig. 5). This result verified that the fucoxanthin 
possessed the antiviral effect by inhibiting ACE2-spike 
protein binding. 

DISCUSSION

The imbalances related to oxidative stress and inflam-
mation in the host cells may, in turn, be responsible for 
viral infections; therefore, inflammatory mediators are 
correlated to oxidative stress in the infected host cells 
(Zeremski et al. 2007, Pereira et al. 2021). Interestingly, 
the formation of reactive oxygen species (ROS) and hy-
per-inflammation, due to factors such as cytokine storm 
syndrome, are both major predictors of the development, 
severity, and mortality of coronavirus disease-19 (Katsiki 
and Ferrannini 2020, Tan et al. 2021, Vollbracht and Kraft 
2022). Thus, many researchers have attempted to explore 
the antiviral properties of compounds with antioxidant 

The stability of the fucoxanthin-ACE2-spike protein com-
plex was expressed as two types of energy values: the 
highest docking interaction energy (–CDOCKER interac-
tion energy) was 54.8897 kcal mol-1, and the lowest total 
binding energy was -318.306 kcal mol-1 (Fig. 2E).

The fucoxanthin-Mpro complex also displayed a favor-
able hydrogen bond with the donor (represented by the 
pink section) and the acceptor (represented by the green 
section) regions (Fig. 2C). The binding position of the fu-
coxanthin-Mpro complex revealed a network of hydrogen 
and alkyl bonds between the following residues: Tyr118 
(Pi-Alkyl), Leu141 (Alkyl), Met165 (Alkyl), Pro168 (Alkyl), 
Gln189 (conventional hydrogen bond and / or carbon 
hydrogen bond). The stability of the fucoxanthin-Mpro 
complex was expressed as two types of energy values: the 
highest docking interaction energy (–CDOCKER interac-
tion energy) was 44.6378 kcal mol-1, and the lowest total 
binding energy was -205.118 kcal mol-1 (Fig. 2E). Howev-
er, fucoxanthin failed to dock to RdRp (data not shown). 
These results indicated that fucoxanthin combined more 
strongly with the ACE2-spike protein, compared to Mpro, 
and has the least potential for docking to RdRp.

MD simulation of fucoxanthin on ACE2-spike 
protein and Mpro

The stability of each of the fucoxanthin complexes was 
predicted using MD simulations. Fucoxanthin remained 
continuously docked to the active site of the ACE2-spike 
protein at the end of a 20 ns simulation (Fig. 3A), whereas 
the docking broke with Mpro in the middle of the simula-
tion (Fig. 3B). Furthermore, the total energy of the confor-
mations of fucoxanthin-ACE2-spike protein complex was 
found to be relatively unchanged for a duration of 1.5–10 
ns (Fig. 3C), whereas the total energy of the conforma-
tions of fucoxanthin-Mpro complex was reduced, until the 
breakout of fucoxanthin (Fig. 3D).

Moreover, RMSD analysis of the conformations on the 
initial frame in the trajectory indicated that fucoxanthin 
achieved a stable conformation with ACE2-spike protein 
for up to a 20 ns simulation (Fig. 4A); whereas, fucoxan-
thin formed an unstable conformation with Mpro, showing 
the jumping value at about 3 ns (Fig. 4B). In the fucoxan-
thin-ACE2-spike protein complex, the Tyr449 residue on 
the spike protein was essential for stability of the com-
plex, which was demonstrated by a sustainable interac-
tion at a frequency of 1.149 (Fig. 4C, Supplementary Table 
S1). Although some amino acids on Mpro, such as Pro168, 
did form interactions with fucoxanthin, the interactions 
broke in the middle of the simulation (Fig. 4D, Supple-

Fig. 5. Angiotensin-converting enzyme 2-spike protein binding 
inhibition effect of the fucoxanthin derived from Sargassum siliquas-
trum. The results are expressed as means ± standard deviation (n = 3). 
***p < 0.001 vs. fucoxnathin (50 μM)-treated cells.
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hibits SARS-CoV-2 by acting similarly to Umifenovir.
SARS-CoV-2 infection causes renin angiotensin system 

activation containing ACE2. ACE1 metabolizes angio-
tensin I to angiotensin II, thus leading to increased vaso-
constriction. While ACE2 leads vasodilation by changing 
angiotensin II produced by ACE1 to angiotensin 1–7. It 
means that the binding of SARS-CoV-2 to ACE2 inhibits 
ACE2 function, and results in disturbance of vasodilation 
(González-Rayas et al. 2020). Previous study presented 
the inhibition effect of fucoxanthin from Sargassum sp. 
on ACE in in vitro and in silico (Raji et al. 2020). Also, in 
this study, fucoxanthin possess antiviral activity against 
SARS-CoV-2 by inhibiting the binding of spike protein to 
ACE2. These results suggested that fucoxanthin possess 
both blood pressure control effects and SARS-CoV-2 in-
fection inhibition effects. Thus, further investigations are 
required to verify the multiple effect of fucoxanthin as a 
therapy for SARS-CoV-2 infection and / or the vascular 
disease by the infection.

According to a previous study, fucoxanthin displays 
low toxicity in normal cells both in vitro and in vivo (Peng 
et al. 2011). Furthermore, the U.S. Food and Drug Admin-
istration (FDA) has acknowledged the use of fucoxanthin 
as a dietary ingredient via a New Dietary Ingredient no-
tification of fucoxanthin (FDA, updated 2017). Thus, fu-
coxanthin can be a new potential drug candidate. More 
detailed studies are required to establish the efficacy and 
optimal concentration of fucoxanthin use against SARS-
CoV-2, as well as to determine its safety and bioavailabil-
ity in in vivo models. Furthermore, in order to increase 
the industrial utility of algal natural products including 
fucoxanthin, research on the quantitative-structure ac-
tivity relationships of algal natural products should be 
conducted through the accumulation of training set data 
based on artificial intelligence technology.

In conclusion, to determine the antiviral activity of fu-
coxanthin derived from S. siliquastrum, we conducted in 
vitro tests using SARS-CoV-2-infected Vero cells, in silico 
confirmations using molecular docking and MD simu-
lations, and in vitro verification on the structural bond 
using colorimetric method. Fucoxanthin exhibited an 
inhibition rate of 61.45 ± 4.12% at 50 μM concentration. 
On the basis of this observation, along with the results 
of in silico docking of fucoxanthin to ACE2-spike protein 
and in vitro inhibiting on the binding between ACE2 and 
spike protein, it was verified that the antiviral activity of 
fucoxanthin might be due to the blocking of viral entry. 
Therefore, fucoxanthin can be a potential candidate for 
the treatment and / or prevention of coronaviruses, in-
cluding SARS-CoV-2.

and anti-inflammatory properties (Katsiki and Ferran-
nini 2020, Rehman et al. 2021, Tan et al. 2021, Pisoschi 
et al. 2022). According to the results of previous studies, 
fucoxanthin derived from S. siliquastrum decreased in-
tracellular ROS generation and cell damage caused by 
exposure to UV-B radiation or hydrogen peroxide (Heo 
et al. 2008, Heo and Jeon 2009). Also, fucoxanthin inhib-
ited the production of inflammatory mediators such as 
nitric oxide, prostaglandin E2, tumor necrosis factor-α, 
and interleukin-6 (Heo et al. 2012). Furthermore, in this 
study, fucoxanthin inhibited the infection of SARS-CoV-2 
in Vero cells in vitro. Fucoxanthin shows both antioxidant 
and anti-inflammatory properties, as well as antiviral ac-
tivities.

Molecular docking is a prediction algorithm for deter-
mining the binding affinities between a small molecule 
and a protein target (Torres et al. 2019, Kang et al. 2022). 
Molecular dynamics is a computer simulation method for 
evaluating the stability of a small molecule binding to a 
protein target (Guterres and Im 2020). Several previous 
studies have reported on ligand-protein complex forma-
tions by validating their results using molecular dock-
ing and MD simulations, to support their in vitro results 
(Elkaeed et al. 2022, Saleem et al. 2022, Deswal et al. 2023, 
Nassar et al. 2023). 

The virus-specific molecular interaction with the host 
cell can be a key target for exploring antiviral drugs. SARS-
CoV-2 enters the host cell by binding the spike protein to 
cellular ACE2 receptor (Choudhary et al. 2020, Panda et 
al. 2020). Mpro, a cysteine protease residing in nsp5, is re-
sponsible for the proteolysis of processing of major poly-
proteins cleavage sites resulting in the formation of viral 
nonstructural proteins. Mpro is considered a promising 
drug target because Mpro is dissimilar to human prote-
ase while it is closely related to those of other betacoro-
naviruses (Dai et al. 2020, Khan et al. 2020, Ullrich and 
Nitsche 2020). 

In silico studies on the fucoxanthin-main protein com-
plexes showed that fucoxanthin combined with the ACE2-
spike protein by revealing a network of pi-alkyl bonds 
with some amino acid residues such as Tyr449, Tyr453, 
and Tyr495 (on the spike protein). Also, the results of the 
MD simulations indicated that fucoxanthin could form 
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