• Title/Summary/Keyword: virus control

Search Result 1,013, Processing Time 0.028 seconds

The Effects of Virus and Viroid Infections on the Growth and Fruit Quality of 'Hongro' Apples (사과 바이러스와 바이로이드 감염이 '홍로' 사과의 수체 및 과실 특성에 미치는 영향)

  • Sang-Yun Cho;Hyun Ran Kim;Kang Hee Cho;Se Hee Kim;Byeonghyeon Yun;Sewon Oh;Ji Hae Jun
    • Korean Journal of Plant Resources
    • /
    • v.37 no.4
    • /
    • pp.401-410
    • /
    • 2024
  • This study was undertaken to elucidate the effects of virus and viroid infections on the growth of trees and the attributes of fruit quality in 'Hongro' apples. Trials were initiated using virus-infected, viroid-infected, combined virus/viroid-infected, and uninfected apple trees in an experimental apple orchard at the National Institute of Horticultural and Herbal Science in 2019. The growth of each tree was measured annually and compared between virus-free and virus/viroid-infected trees. Fruits were harvested from all apple trees, and selected attributes of fruit quality, including yield, weight, firmness, titratable acidity, and anthocyanin content, were determined in September 2021-2022. The results revealed significant differences among virus-free trees and those infected with either virus, viroid, or a combination of virus and viroid. Infection with viral and viroid diseases led to reductions in tree height (14.0%), trunk area (23.1%), fruit yield (65.0%), fruit weight (34.4%), and anthocyanin content (39.8%), while increasing fruit firmness (33.2%) and titratable acidity (39.8%), respectively. We anticipate that our research findings will also be beneficial for apple virus and viroid disease control, as well as apple cultivation management.

Plant Immunity against Viruses: Moving from the Lab to the Field (식물바이러스 면역반응 최신 연구 동향 및 전망)

  • Kim, Nam-Yeon;Hong, Jin-Sung;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.9-25
    • /
    • 2018
  • Plant viruses cause significant yield losses and continuously threaten crop production, representing a serious threat to global food security. Studies on plant-virus interactions have contributed to increase our knowledge on plant immunity mechanism, providing new strategies for crop improvement. The prophylactic managements consist mainly following international legislations, eradication of infected plants, and application of pesticide to decrease the population of vectors. Hence, putting together the pieces of knowledge related to molecular plant immunity to viruses is critical for the control of virus disease in fields. Over the last several decades, the outstanding outcomes of extensive research have been achieved on comprehension of plant immunity to viruses. Although most dominant R genes have been used as natural resistance genes, recessive resistance genes have been deployed in several crops as another efficient strategy to control viruses. In addition, RNA interference also regulates plant immunity and contribute a very efficient antiviral system at the nucleic acid level. This review aims at describing virus disease on crops and summarizes current resistance mechanisms. Furthermore, we will discuss the current biotechnological approaches to control viral diseases and the future questions that are to be addressed to secure crop production against viruses.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Statistical data on fish virus of cultured olive flounder, Paralichthys olivaceus from 2005 to 2007 (2005년부터 2007년 사이 양식 넙치, Paralichthys olivaceus를 대상으로 한 어류바이러스 검출에 대한 통계 자료)

  • Cho, Mi-Young;Park, Gyeong-Hyun;Ji, Bo-Young;Kim, Jin-Woo
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.155-163
    • /
    • 2010
  • The epidemiological study was performed to survey the prevalence of fish pathogens in cultured olive flounder, Paralichthys olivaceus from 2005 to 2007. In this study, the fish pathogens were detected from 1,528 among 2,238 fish samples collected yearly in 5 sites from February, May, August and November. Annual incidences for three years show a yearly increase and there were 60.6% in 2005, 66.7% in 2006 and 72.3% in 2007, respectively. Seasonal prevalence was 63.5% in February, 67.4% in May, 75.1% in August and 64.4% in November for three years. The detection rates of 6 viral pathogens were 35.6% in 2005, 44.6% in 2006 and 24.4% in 2007 and the peak rate was 55.4% at adult size group (above 41cm). Viral nervous necrosis virus (24.7%) has been the most predominant virus in this investigation, while much lower rates were noted in viral haemorrhagic septicemia virus (10.6%) and red sea bream iridovirus (0.9%).

Involvement of Heat-stable and Proteinaceous Materials in the Culture of Pseudomonas putida JB-1 for the Inhibition of Tobacco mosaic virus Infection

  • Jeon, Yong-Ho;Kim, Jae-Hyun;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.328-336
    • /
    • 2008
  • Out of various fungi and bacteria tested for inhibition of Tobacco mosaic virus(TMV) infection using Nicotiana tabacum cv. Xanthi-nc, a bacterial isolate JB-l, identified as Pseudomonas putida had a strong direct inhibitory activity against the TMV infection. Its systemic or indirect activity was also noted at more than a half level of the direct control efficacy. Disease severity was reduced significantly in the susceptible tobacco N. tabacum cv. NC 82 by the treatment of the bacterial culture filtrate, somewhat more by the pretreatment than by simultaneous treatment, probably by inhibiting the TMV transmission and translocation in the plants, showing negative serological, which responses in the viral detection by DAS-ELISA. TMV-inhibitory substances from P. putida JB-1 were water-soluble, stable to high temperature(even boiling), and to a wide range of pH. As proteinase K nullified their antiviral activity, the TMV inhibition activity of P. putida may be derived from proteinaceous materials. In electron microscopy, TMV particles treated with the JB-1 culture were shown to be shrunken with granule-like particles attached on them. All of these aspects suggest that P. putida JB-1 may be developed as a potential agent for the control of TMV.

Survey of Disease Occurrence in Tobacco Plants of the Kyeongbuk Area during 2005-2006 (2005~2006 년도 경북지역 담배 병 발생상황)

  • Yi, Young-Keun;Yim, Young-Gu
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Major diseases of tobacco and farmer's control practices were surveyed in the Kyeongbuk province area from 2005 to 2006. Mosaic caused by potato virus Y and bacterial wilt caused by Ralstonia solanacearum were most severe during the harvest season. Compared with the disease occurrence of ten years ago, the damage by tobacco mosaic virus reduced but bacterial wilt increased. These changes in the disease occurrences may probably be due to releasing the resistant tobacco cultivar to the mosaic virus but susceptible to the bacterial wilt pathogen. More than thirty percentage of the farmers have misused fungicides and also have applied the continuous mono-cropping system for more than ten years, and have chosen the incorrect crops for the rotation.

Gene Transfer and Gene Expression of Novel Recombinant Baculovirus Vector System (새로운 재조합 베큘로바이러스벡터의 유전자전이와 유전자발현)

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.946-948
    • /
    • 2013
  • Several baculovirus vector systems recombined with coding genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were applied into human foreskin fibroblast cells and compared the effects of gene transfer and gene expression of these recombinant baculovirus vector systems with control vector system. From this study, it showed that these novel recombinant baculovirus vector systems were superior efficacy to control vector system in view of gene transfer and gene expression.

  • PDF

Construction and Transfection of Recombinant Baculovirus Vectors (재조합 베큘로바이러스 벡터의 제조와 감염)

  • Sa, Young Hee;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.700-703
    • /
    • 2017
  • Baculovirus vectors were recombined using uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), protein transduction domain (PTD) gene and so on. These novel recombinant vectors were infected into various cell lines. We performed and analyzed gene transfer and gene expression of these recombinant vectors comparison with other control vectors. From this result, we identified that these recombinant vectors have higher efficient gene transfer and expression of than control vector.

  • PDF

Application of Jasmonic Acid Followed by Salicylic Acid Inhibits Cucumber mosaic virus Replication

  • Luo, Ying;Shang, Jing;Zhao, Pingping;Xi, Dehui;Yuan, Shu;Lin, Honghui
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Systemic acquired resistance is a form of inducible resistance that is triggered in systemic healthy tissues of local-infected plants. Several candidate signaling molecules emerged in the past two years, including the methylated derivatives of well-known defense hormones salicylic acid (SA) and jasmonic acid (JA). In our present study, the symptom on Cucumber mosaic virus (CMV) infected Arabidopsis leaves in 0.1 mM SA or 0.06 mM JA pre-treated plants was lighter (less reactive oxygen species accumulation and less oxidative damages) than that of the control group. JA followed by SA (JA${\rightarrow}$SA) had the highest inhibitory efficiency to CMV replication, higher than JA and SA simultaneous co-pretreatment (JA+SA), and higher than a JA or a SA single pretreatment. The crosstalk between the two hormones was further investigated at the transcriptional levels of pathogenesis-related genes. The time-course measurement showed JA might play a more important role in the interaction between JA and SA.

Gene Transfer and Expression of Newly Reconstructed Baculovirus Vectors (재조성된 베큘로바이러스 벡터의 유전자 전이와 발현)

  • Kim, Ji-Young;Kim, Hyun Joo;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.923-926
    • /
    • 2016
  • Baculovirus vectors were reconstructed using cytomegalovirus (CMV) promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) genes. These reconstructed vector was transfected into various cell lines and tissues. We compared this reconstructed vector with other control vectors in view of gene transfer and gene expression. In conclusion, we confirmed that gene transfer and expression of these reconstructed vectors was higher efficient than any other control vector.

  • PDF