DOI QR코드

DOI QR Code

Plant Immunity against Viruses: Moving from the Lab to the Field

식물바이러스 면역반응 최신 연구 동향 및 전망

  • Kim, Nam-Yeon (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Hong, Jin-Sung (Department of Applied Biology, College of Agriculture and Life Science, Kangwon National University) ;
  • Jeong, Rae-Dong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University)
  • 김남연 (전남대학교 응용생물학과) ;
  • 홍진성 (강원대학교 응용생물학과) ;
  • 정래동 (전남대학교 응용생물학과)
  • Received : 2018.01.30
  • Accepted : 2018.02.20
  • Published : 2018.03.31

Abstract

Plant viruses cause significant yield losses and continuously threaten crop production, representing a serious threat to global food security. Studies on plant-virus interactions have contributed to increase our knowledge on plant immunity mechanism, providing new strategies for crop improvement. The prophylactic managements consist mainly following international legislations, eradication of infected plants, and application of pesticide to decrease the population of vectors. Hence, putting together the pieces of knowledge related to molecular plant immunity to viruses is critical for the control of virus disease in fields. Over the last several decades, the outstanding outcomes of extensive research have been achieved on comprehension of plant immunity to viruses. Although most dominant R genes have been used as natural resistance genes, recessive resistance genes have been deployed in several crops as another efficient strategy to control viruses. In addition, RNA interference also regulates plant immunity and contribute a very efficient antiviral system at the nucleic acid level. This review aims at describing virus disease on crops and summarizes current resistance mechanisms. Furthermore, we will discuss the current biotechnological approaches to control viral diseases and the future questions that are to be addressed to secure crop production against viruses.

전 세계적으로 주요 작물에서 기후변화, 무역의 다변화 등 여러 요인에 의해 식물바이러스에 의한 작물 생산량 감소 등의 경제적 손실이 심각하다. 이에 경제 작물에서 심각한 바이러스 병 피해를 줄이기 위한 여러 바이러스에 대한 광범위한 저항성 작물개발이 시급하다. 식물바이러스 병 예방 및 방제를 위해서 지금까지 연구해왔던 바이러스-식물간의 상호작용 기초 연구결과물 뿐만 아니라 식물면역 관련 과학적 방법 종합화를 통한 응용화된 연구 진행이 필요하다. 본 리뷰에서는 바이러스 저항성 작물 도입을 위해 지금까지 연구되어 왔던 식물면역 기작을 소개하고 이를 활용한 작물 개발 사례를 소개하였다. 또한 유전자교정기술과 같은 게놈 공학 기술을 활용한 바이러스 저항성 작물의 필요성과 연구 방향에 대해 기술하였다. 본 리뷰를 통해 현재까지 알려져 있는 바이러스 면역 기작에 대한 이해를 돕고, 최신 바이러스 병방제 기술들을 소개함으로써 농민들뿐만 아니라 연구자들에게도 도움이 되기를 바라며, 식물면역 연구가 작물 재배 중 발생할 수 있는 바이러스 병 농가 피해를 감소시킬 수 있는 효과적인 대응 방안으로 이어지길 바란다.

Keywords

References

  1. Abe, H., Tomitaka, Y., Shimoda, T., Seo, S., Sakurai, T., Kugimiya, S. et al. 2012. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol. 53: 204-212. https://doi.org/10.1093/pcp/pcr173
  2. Abel, P. P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T. et al. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743. https://doi.org/10.1126/science.3457472
  3. Ali, S. S., Gunupuru, L. R., Kumar, G. B., Khan, M., Scofield, S., Nicholson, P. et al. 2014. Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biol. 14: 227. https://doi.org/10.1186/s12870-014-0227-1
  4. Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M. M. 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16: 238. https://doi.org/10.1186/s13059-015-0799-6
  5. Ali, Z., Ali, S., Tashkandi, M., Zaidi, S. S. and Mahfouz, M. M. 2016. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci. Rep. 6: 26912. https://doi.org/10.1038/srep26912
  6. Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q. et al. 2012. Structure-function analysis of barley NLR immune receptorMLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog. 8: e1002752. https://doi.org/10.1371/journal.ppat.1002752
  7. Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M. et al. 2015. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1: 15145. https://doi.org/10.1038/nplants.2015.145
  8. Barajas, D., Martin, I. F., Pogany, J., Risco, C. and Nagy, P. D. 2014. Noncanonical role for the host Vps4 AAA+ ATPase ESCRT protein in the formation of tomato bushy stunt virus replicase. PLoS Pathog. 10: e1004087. https://doi.org/10.1371/journal.ppat.1004087
  9. Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The Rx gene from potato con-trols separate virus resistance and cell death responses. Plant Cell 11: 781-792. https://doi.org/10.1105/tpc.11.5.781
  10. Bendahmane, A., Querci, M., Kanyuka, K. and Baulcombe, D. C. 2000. Agrobacterium tran-sient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 21: 73-81. https://doi.org/10.1046/j.1365-313x.2000.00654.x
  11. Blevins, T., Rajeswaran, R., Aregger, M., Borah, B. K., Schepetilnikov, M., Baerlocher, L. et al. 2011. Massive production of small RNAs from a non-coding region of cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res. 39: 5003-5014. https://doi.org/10.1093/nar/gkr119
  12. Bologna, N. G. and Voinnet, O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65: 473-503. https://doi.org/10.1146/annurev-arplant-050213-035728
  13. Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J. et al. 2014. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186: 20-31. https://doi.org/10.1016/j.virusres.2013.12.007
  14. Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D. et al. 2013. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 51: 177-201. https://doi.org/10.1146/annurev-phyto-082712-102346
  15. Bravo-Almonacid, F., Rudoy, V., Welin, B., Segretin, M. E., Bedogni, M. C., Stolowicz, F. et al. 2012. Field testing, gene flow assessment and pre-commercial studies on transgenic Solanum tuberosum spp. tuberosum (cv. Spunta) selected for PVY resistance in Argentina. Transgenic Res. 21: 967-982. https://doi.org/10.1007/s11248-011-9584-9
  16. Brommonschenkel, S. H., Frary, A., Frary, A. and Tanksley, S. D. 2000. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant-Microbe Interact. 13: 1130-1138. https://doi.org/10.1094/MPMI.2000.13.10.1130
  17. Bruun-Rasmussen, M., Moller, I. S., Tulinius, G., Hansen, J. K., Lund, O. S. and Johansen, I. E. 2007. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum. Mol. Plant-Microbe Interact. 20: 1075-1082. https://doi.org/10.1094/MPMI-20-9-1075
  18. Calvert, L. A. and Tresh, J. M. 2002. The viruses and virus diseases of cassava. In: Cassava: Biology, Production and Utilization, eds. by R. J. Hillocks, J. M. Thresh and A. C. Bellotti. CABI Publishing, Wallingford.
  19. Cambra, M., Capote, N., Myrta, A. and Llacer, G. 2006. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36: 202-204. https://doi.org/10.1111/j.1365-2338.2006.01027.x
  20. Candresse, T., Marais, A., Faure, C., Dubrana, M. P., Gombert, J. and Bendahmane, A. 2010. Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato rx resistance gene in transgenic tomatoes. Mol. Plant-Microbe Interact. 23: 376-383.
  21. Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K. and Dinesh-Kumar, S. P. 2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132: 449-462. https://doi.org/10.1016/j.cell.2007.12.031
  22. Casteel, C., De Alwis, M., Bak, A., Dong, H., Steven, A. and Jander, G. 2015. Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the aphid vector, Myzus persicae. Plant Physiol. 169: 209-218. https://doi.org/10.1104/pp.15.00332
  23. Cavatorta, J., Perez, K. W., Gray, S. M., Van Eck, J., Yeam, I. and Jahn, M. 2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9: 1014-1021. https://doi.org/10.1111/j.1467-7652.2011.00622.x
  24. Ceasar, S. A., Rajan, V., Prykhozhij, S. V., Berman, J. N. and Ignacimuthu, S. 2016. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta 1863: 2333-2344.
  25. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M. et al. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17: 1140-1153. https://doi.org/10.1111/mpp.12375
  26. Chen, L., Zhang, L., Li, D., Wang, F. and Yu, D. 2013. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 110: E1963-E1971. https://doi.org/10.1073/pnas.1221347110
  27. Chen, W., Qian, Y., Wu, X., Sun, Y., Wu, X. and Cheng, X. 2014. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 48: 494-501. https://doi.org/10.1007/s11262-014-1041-4
  28. Cheng, X., Li, F., Cai, J., Chen, W., Zhao, N., Sun, Y. et al. 2015. Artificial TALE as a convenient protein platform for engineering broadspectrum resistance to begomoviruses. Viruses 7: 4772-4782. https://doi.org/10.3390/v7082843
  29. Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L. and Carrington, J. C. 2000. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc. Natl. Acad. Sci. U.S.A. 97: 489-494. https://doi.org/10.1073/pnas.97.1.489
  30. Choi, S., Nakahara, K., Andrade, M. and Uyeda, I. 2012. Characterization of the recessive resistance gene cyv1 of Pisum sativum against Clover yellow vein virus. J. Gen. Plant Pathol. 78: 269-276. https://doi.org/10.1007/s10327-012-0383-9
  31. Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. and Klessig, D. F. 2000. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12: 663-676. https://doi.org/10.1105/tpc.12.5.663
  32. Cosson, P., Schurdi-Levraud, V., Le, Q. H., Sicard, O., Caballero, M., Roux, F. et al. 2012. The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS One 7: e39169. https://doi.org/10.1371/journal.pone.0039169
  33. Cosson, P., Sofer, L., Le, Q. H., Leger, V., Schurdi-Levraud, V., Whitham, S. A. et al. 2010. RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol. 154: 222-232. https://doi.org/10.1104/pp.110.155754
  34. De Ronde, D., Butterbach, P. and Kormelink, R. 2014. Dominant resistance against plant viruses. Front. Plant Sci. 5: 307.
  35. Dempsey, D. A. and Klessig, D. F. 2012. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545. https://doi.org/10.1016/j.tplants.2012.05.011
  36. Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5: 223-233. https://doi.org/10.1111/j.1364-3703.2004.00223.x
  37. Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G. et al. 2011. The evolutionary genetics of emerging plant RNA viruses. Mol. Plant-Microbe Interact. 24: 287-293. https://doi.org/10.1094/MPMI-09-10-0214
  38. Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64: 839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
  39. Gao, Z., Johansen, E., Eyers, S., Thomas, C. L., Noel Ellis, T. H. and Maule, A. J. 2004. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking. Plant J. 40: 376-385. https://doi.org/10.1111/j.1365-313X.2004.02215.x
  40. Geri, C., Cecchini, E., Giannakou, M. E., Covey, S. N. and Milner, J. J. 1999. Altered patterns of gene expression in Arabidopsis elicited by cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Mol. Plant-Microbe Interact 12: 377-384. https://doi.org/10.1094/MPMI.1999.12.5.377
  41. Geri, C., Love, A. J., Cecchini, E., Barrett, S. J., Laird, J., Covey, S. N. et al. 2004. Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV infection and show reduced ethylene sensitivity. Plant Mol. Biol. 56: 111-124. https://doi.org/10.1007/s11103-004-2649-x
  42. Gozzo, F. and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agric. Food Chem. 61: 12473-12491. https://doi.org/10.1021/jf404156x
  43. Hajimorad, M. R., Eggenberger, A. L. and Hill, J. H. 2005. Loss and gain of elicitor function of Soybean mosaic virus G7 provoking Rsv1-mediated lethal systemic hyper-sensitive response maps to P3. J. Virol. 79: 1215-1222. https://doi.org/10.1128/JVI.79.2.1215-1222.2005
  44. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L. et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945-956. https://doi.org/10.1016/j.cell.2009.07.040
  45. Hao, W., Collier, S. M., Moffett, P. and Chai, J. 2013. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2). J. Biol. Chem. 288: 35868-35876. https://doi.org/10.1074/jbc.M113.517417
  46. Harper, S. J. 2013. Citrus tristeza virus: evolution of complex and varied genotypic groups. Front. Microbiol. 4: 93.
  47. Hart, J. P. and Griffiths, P. D. 2013. A series of eIF4E alleles at the Bc-3 locus are associated with recessive resistance to Clover yellow vein virus in common bean. Theor. Appl. Genet. 126: 2849-2863. https://doi.org/10.1007/s00122-013-2176-8
  48. Hofinger, B. J., Russell, J. R., Bass, C. G., Baldwin, T., dos Reis, M., Hedley, P. E. et al. 2011. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20: 3653-3668.
  49. Hsu, P. D., Lander, E. S. and Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  50. Hull, R. 2013. Plant Virology. 5th ed. Academic Press, New York.
  51. Hwang, J., Oh, C. S. and Kang, B. C. 2013. Translation elongation factor 1B (eEF1B) is an essential host factor for tobacco mosaic virus infection in plants. Virology 439: 105-114. https://doi.org/10.1016/j.virol.2013.02.004
  52. Hyodo, K., Mine, A., Taniguchi, T., Kaido, M., Mise, K., Taniguchi, H. et al. 2013. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J. Virol. 87: 163-176. https://doi.org/10.1128/JVI.02383-12
  53. Ishibashi, K. and Ishikawa, M. 2013. The resistance protein Tm-1 inhibits formation of a tomato mosaic virus replication proteinhost membrane protein complex. J. Virol. 87: 7933-7939.
  54. Ishibashi, K., Masuda, K., Naito, S., Meshi, T. and Ishikawa, M. 2007. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc. Natl. Acad. Sci. U.S.A. 104: 13833-13838. https://doi.org/10.1073/pnas.0703203104
  55. Ishibashi, K., Miyashita, S., Katoh, E. and Ishikawa, M. 2012. Host membrane proteins involved in the replication of tobamovirus RNA. Curr. Opin. Virol. 2: 693-698.
  56. Jakubiec, A., Yang, S. W. and Chua, N. H. 2012. Arabidopsis DRB4 protein in antiviral defense against turnip yellow mosaic virus infection. Plant J. 69: 14-25. https://doi.org/10.1111/j.1365-313X.2011.04765.x
  57. Jeong, R. D., Chandra-Shekara, A. C., Barman, S. R., Navarre, D., Klessig, D. F., Kachroo, A. et al. 2009. Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. 107: 13538-13543.
  58. Ji, X., Zhang, H., Zhang, Y., Wang, Y. and Gao, C. 2015. Establishing a CRISPRCas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1: 15144. https://doi.org/10.1038/nplants.2015.144
  59. Jiang, L., Qian, D., Zheng, H., Meng, L. Y., Chen, J., Le, W. J. et al. 2012. RNA dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, rice stripe virus. Virus Res. 163: 512-519. https://doi.org/10.1016/j.virusres.2011.11.016
  60. Kang, B. C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43: 581-621. https://doi.org/10.1146/annurev.phyto.43.011205.141140
  61. Kang, B. C., Yeam, I., Li, H., Perez, K. W. and Jahn, M. M. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants, Plant Biotechnol. J. 5: 526-536. https://doi.org/10.1111/j.1467-7652.2007.00262.x
  62. Kanyuka, K., Druka, A., Caldwell, D. G., Tymon, A., McCallum, N., Waugh, R. et al. 2005. Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol. Plant Pathol. 6: 449-458. https://doi.org/10.1111/j.1364-3703.2005.00294.x
  63. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A. et al. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4: 205-217. https://doi.org/10.1016/S1534-5807(03)00025-X
  64. Kazan, K. and Lyons, R. 2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26: 2285-2309. https://doi.org/10.1105/tpc.114.125419
  65. Kim, S.-B., Kang, W.-H., Huy, H. N., Yeon, S.-I., An, J.-T., Kim, S. et al. 2017. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. New Phytol. 213: 886-899. https://doi.org/10.1111/nph.14177
  66. King, A. M. Q., Adams, M. J., Carsterns, E. B. and Lefkowitz, E. 2012. Virus Taxonomy: Claassification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego.
  67. Kosaka, Y., Ryang, B.-S., Katagiri, N. and Yasuhara, H. 2009. Development and diffusion of CUBIO ZY-02, a water-soluble formulation of an attenuated zucchini yellow mosaic virus isolate, for the control of cucumber mosaic disease. In: Proceedings of PSJ Biocontrol Workshop, vol. 11, pp. 63-72. Yamagata.
  68. Koshino-Kimura, Y., Takenaka, K., Domoto, F., Aoyama, Y. and Sera, T. 2008. Generation of plants resistant to tomato yellow leaf curl virus by using artificial zinc-finger proteins. Nucleic Acids Symp. Ser. (Oxf.) 52: 189-190. https://doi.org/10.1093/nass/nrn096
  69. Koshino-Kimura, Y., Takenaka, K., Domoto, F., Ohashi, M., Miyazaki, T., Aoyama, Y. et al. 2009. Construction of plants resistant to TYLCV by using artificial zinc-finger proteins. Nucleic Acids Symp. Ser. (Oxf.) 53: 281-282. https://doi.org/10.1093/nass/nrp141
  70. Lanfermeijer, F. C., Dijkuis, J., Sturre, M. J., de Haan, P. and Hille, J. 2003. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycoperscion esculentum. Plant Mol. Biol. 52: 1037-1049.
  71. Lanfermeijer, F. C., Warmink, J. and Hille, J. 2005. The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J. Exp. Bot. 56: 2925-2933.
  72. Lee, R. F. and Keremane, M. L. 2013. Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 4: 259.
  73. Legg, J. P. and Thresh, J. M. 2000. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Res. 71: 135-149. https://doi.org/10.1016/S0168-1702(00)00194-5
  74. Lemgo, G. N. Y., Sabbadini, S., Pandolfini, T. and Mezzetti, B. 2013. Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock. Transgenic Res. 22: 1073-1088. https://doi.org/10.1007/s11248-013-9728-1
  75. Li, F., Huang, C., Li, Z. and Zhou, X. 2014a. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog. 10: e1003921. https://doi.org/10.1371/journal.ppat.1003921
  76. Li, Z., Gonzalez, P. A., Sasvari, Z., Kinzy, T. G. and Nagy, P. D. 2014b. Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology 448: 43-54. https://doi.org/10.1016/j.virol.2013.09.012
  77. Liu, P.-P., Yang, Y., Pichersky, E. and Klessig, D. F. 2010. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMPtriggered immunity in Arabidopsis. Mol. Plant-Microbe Interact. 23: 82-90. https://doi.org/10.1094/MPMI-23-1-0082
  78. Liu, Y., Schiff, M., Marathe, R. and Dinesh-Kumar, S. P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30: 415-429. https://doi.org/10.1046/j.1365-313X.2002.01297.x
  79. Love, A. J., Geri, C., Laird, J., Carr, C., Yun, B. W., Loake, G. J. et al. 2012. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7: e47535. https://doi.org/10.1371/journal.pone.0047535
  80. Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C. et al. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3: 16207. https://doi.org/10.1038/nplants.2016.207
  81. Moffett, P. 2009. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 75: 1-33.
  82. Moissiard, G. and Voinnet, O. 2006. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc. Natl. Acad. Sci. U.S.A. 103: 19593-19598. https://doi.org/10.1073/pnas.0604627103
  83. Mori, T., Takenaka, K., Domoto, F., Aoyama, Y. and Sera, T. 2013. Inhibition of binding of tomato yellow leaf curl virus rep to its replication origin by artificial zinc-finger protein. Mol. Biotechnol. 54: 198-203. https://doi.org/10.1007/s12033-012-9552-5
  84. Nicaise, V., German-Retana, S., Sanjuan, R., Dubrana, M. P., Mazier, M., Maison-neuve, B. et al. 2003. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol. 132: 1272-1282. https://doi.org/10.1104/pp.102.017855
  85. Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B. et al. 2006. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48: 452-462. https://doi.org/10.1111/j.1365-313X.2006.02885.x
  86. Nishiguchi, M. and Kobayashi, K. 2011. Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J. Gen. Plant Pathol. 77: 221-229. https://doi.org/10.1007/s10327-011-0318-x
  87. Ouibrahim, L., Mazier, M., Estevan, J., Pagny, G., Decroocq, V., Desbiez, C. et al. 2014. Cloning of the Arabidopsis rwm1 gene for resistance to watermelon mosaic virus points to a new function for natural virus resistance genes. Plant J. 79: 705-716. https://doi.org/10.1111/tpj.12586
  88. Padmanabhan, M. S., Shiferaw, H. and Culver, J. N. 2006. The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. Mol. Plant-Microbe Interact 19: 864-873. https://doi.org/10.1094/MPMI-19-0864
  89. Perez, K., Yeam, I., Kang, B. C., Ripoll, D. R., Kim, J., Murphy, J. F. et al. 2012. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg. Mol. Plant-Microbe Interact. 25: 1562-1573. https://doi.org/10.1094/MPMI-04-12-0091-R
  90. Piatek, A. and Mahfouz, M. M. 2017. Targeted genome regulation via synthetic programmable transcriptional regulators. Crit. Rev. Biotechnol. 37: 429-440. https://doi.org/10.3109/07388551.2016.1165180
  91. Pumplin, N. and Voinnet, O. 2013. RNA silencing suppression by plant pathogens: defence, counter-defense and counter-counter-defense. Nat. Rev. Microbiol. 11: 745-760.
  92. Pyott, D. E., Sheehan, E. and Molnar, A. 2016. Engineering of CRISPR/Cas9- mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 17: 1276-1288. https://doi.org/10.1111/mpp.12417
  93. Qu, F., Ye, X. and Morris, T. J. 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl. Acad. Sci. U.S.A. 105: 14732-14737. https://doi.org/10.1073/pnas.0805760105
  94. Quenouille, J., Montarry, J., Palloix, A. and Moury, B. 2013. Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol. Plant Pathol. 14: 109-118. https://doi.org/10.1111/j.1364-3703.2012.00834.x
  95. Rai, M. 2006. Refinement of the Citrus tristeza virus resistance gene (Ctv) positionalmap in Poncirus trifoliata and generation of transgenic grapefruit (Citrus para-disi) plant lines with candidate resistance genes in this region. Plant Mol. Biol. 61: 399-414. https://doi.org/10.1007/s11103-006-0018-7
  96. Robert-Seilaniantz, A., Grant, M. and Jones, J. D. G. 2011. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu. Rev. Phytopathol. 49: 317-343. https://doi.org/10.1146/annurev-phyto-073009-114447
  97. Rodriguez, M. C., Conti, G., Zavallo, D., Manacorda, C. A. and Asurmendi, S. 2014. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol. 14: 210. https://doi.org/10.1186/s12870-014-0210-x
  98. Ruffel, S., Dussault, M. H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32: 1067-1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x
  99. Ruffel, S., Gallois, J. L., Lesage, M. L. and Caranta, C. 2005. The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol. Genet. Genomics 274: 346-353. https://doi.org/10.1007/s00438-005-0003-x
  100. Ruffel, S., Gallois, J. L., Moury, B., Robaglia, C., Palloix, A. and Caranta, C. 2006. Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J. Gen. Virol. 87: 2089-2098. https://doi.org/10.1099/vir.0.81817-0
  101. Sanfacon, H. 2015. Plant translation factors and virus resistance. Viruses 7: 3392-3419. https://doi.org/10.3390/v7072778
  102. Sansregret, R., Dufour, V., Langlois, M., Daayf, F., Dunoyer, P., Voinnet, O. et al. 2013. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog. 9: e1003435. https://doi.org/10.1371/journal.ppat.1003435
  103. Sasaya, T., Nakazono-Nagaoka, E., Saika, H., Aoki, H., Hiraguri, A., Netsu, O. et al. 2013. Transgenic strategies to confer resistance against viruses in rice plants. Front. Microbiol. 4: 409.
  104. Sastry, S. K. and Zitter, T. A. 2014. Management of virus and viroid diseases of crops in the tropics. In: Plant Virus and Viroid Diseases in the Tropics, vol. 2, pp. 149-480. Springer, Dordrecht.
  105. Seo, J.-K., Kwon, S.-J., Cho, W. K., Choi, H.-S. and Kim, K.-H. 2014. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci. Rep. 4: 5905.
  106. Seo, Y. S., Jeon, J. S., Rojas, M. R. and Gilbertson, R. L. 2007. Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in com-mon bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Mol. Plant Pathol. 8: 151-162.
  107. Seo, Y. S., Rojas, M. R., Lee, J. Y., Lee, S. W., Jeon, J. S., Ronald, P. et al. 2006. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl. Acad. Sci. U.S.A. 103: 11856-11861.
  108. Sera, T. 2005. Inhibition of virus DNA replication by artificial zinc finger proteins. J. Virol. 79: 2614-2619. https://doi.org/10.1128/JVI.79.4.2614-2619.2005
  109. Shimizu, T., Nakazono-Nagaoka, E., Akita, F., Uehara-Ichiki, T., Omura, T. and Sasaya, T. 2011. Immunity to rice black streaked dwarf virus, a plant reovirus, can be achieved in rice plants by RNA silencing against the gene for the viroplasm component protein. Virus Res. 160: 400-403. https://doi.org/10.1016/j.virusres.2011.05.011
  110. Soosaar, J. L. M., Burch-Smith, T. M. and Dinesh-Kumar, S. P. 2005. Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 3: 789-798. https://doi.org/10.1038/nrmicro1239
  111. Sovova, T., Kerins, G., Demnerova, K. and Ovesna, J. 2016. Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Curr. Issues Mol. Biol. 21: 41-62.
  112. Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12: 89-100. https://doi.org/10.1038/nri3141
  113. Stein, N., Perovic, D., Kumlehn, J., Pellio, B., Stracke, S., Streng, S. et al. 2005. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 42: 912-922. https://doi.org/10.1111/j.1365-313X.2005.02424.x
  114. Stella, S. and Montoya, G. 2016. The genome editing revolution: a CRISPRCas TALE off-target story. Bioessays 38: S4-S13. https://doi.org/10.1002/bies.201500160
  115. Szajko, K., Chrzanowska, M., Witek, K., Strzelczyk-Zyta, D., Zagorska, H., Geb-hardt, C. et al. 2008. The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theor. Appl. Genet. 116: 297-303.
  116. Takahashi, H., Miller, J., Nozaki, Y., Takeda, M., Shah, J., Hase, S. et al. 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32: 655-667. https://doi.org/10.1046/j.1365-313X.2002.01453.x
  117. Takenaka, K., Koshino-Kimura, Y., Aoyama, Y. and Sera, T. 2007. Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins. Nucleic Acids Symp. Ser. (Oxf.) (51):429-430.
  118. Takeshita, M., Okuda, M., Okuda, S., Hyodo, A., Hamano, K., Furuya, N. et al. 2013. Induction of antiviral responses by acibenzolar-smethyl against cucurbit chlorotic yellows virus in Melon. Phytopathology 103: 960-965. https://doi.org/10.1094/PHYTO-08-12-0188-R
  119. Taki, A., Yamagishi, N. and Yoshikawa, N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res. 176: 251-258. https://doi.org/10.1016/j.virusres.2013.06.015
  120. Tameling, W. I. L., Nooijen, C., Ludwig, N., Boter, M., Slootweg, E., Goverse, A. et al. 2010. RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22: 4176-4194. https://doi.org/10.1105/tpc.110.077461
  121. Tamura, A., Kato, T., Taki, A., Sone, M., Satoh, N., Yamagishi, N. et al. 2013. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections. Virology 446: 314-324. https://doi.org/10.1016/j.virol.2013.08.019
  122. Tenllado, F., Llave, C. and Diaz-Ruiz, J. R. 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102: 85-96. https://doi.org/10.1016/j.virusres.2004.01.019
  123. Thresh, J. M. and Cooter, R. J. 2005. Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol. 54: 587-614.
  124. Tomita, R., Murai, J., Miura, Y., Ishihara, H., Liu, S., Kubotera, Y. et al. 2008. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theor. Appl. Genet. 117: 1107-1118. https://doi.org/10.1007/s00122-008-0848-6
  125. Tran, P.-T., Choi, H., Choi, D. and Kim, K.-H. 2015. Molecular characterization of Pvr9 that confers a hypersensitive response to Pepper mottle virus (a potyvirus) in Nicotiana benthamiana. Virology 481: 113-123. https://doi.org/10.1016/j.virol.2015.02.052
  126. Trejo-Saavedra, D. L., Garcia-Neria, M. A. and Rivera-Bustamante, R. F. 2013. Benzothiadiazole (BTH) induces resistance to pepper golden mosaic virus (PepGMV) in pepper (Capsicum annuum L.). Biol. Res. 46: 333-340. https://doi.org/10.4067/S0716-97602013000400004
  127. Ueda, H., Yamaguchi, Y. and Sano, H. 2006. Direct interaction between the tobacco mosaic virus helicase domain and the ATPbound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol. Biol. 61: 31-45. https://doi.org/10.1007/s11103-005-5817-8
  128. Vallejos, C. E., Astua-Monge, G., Jones, V., Plyler, T. R., Sakiyama, N. S. and Macken-zie, S. A. 2006. Genetic and molecular characterization of the locus of Phaseolus vulgaris. Genetics 172: 1229-1242.
  129. Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G. F., Scott, J. W. et al. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA-dependent RNA polymerases. PLoS Genet. 9: e1003399. https://doi.org/10.1371/journal.pgen.1003399
  130. Voinnet, O. 2001. RNA silencing as a plant immune system against viruses. Trends Genet. 17: 449-459. https://doi.org/10.1016/S0168-9525(01)02367-8
  131. Wagner, S., Stuttmann, J., Rietz, S., Guerois, R., Brunstein, E., Bautor, J. et al. 2013. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14: 619-630. https://doi.org/10.1016/j.chom.2013.11.006
  132. Wang, A. and Krishnaswamy S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13: 795-803. https://doi.org/10.1111/j.1364-3703.2012.00791.x
  133. Wang, X.-B., Jovel, J., Udomporn, P., Wang, Y., Wu, Q., Li, W.-X. et al. 2011. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23: 1625-1638. https://doi.org/10.1105/tpc.110.082305
  134. Wang, X., Goregaoker, S. P. and Culver, J. N. 2009. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J. Virol. 83: 9720-9730. https://doi.org/10.1128/JVI.00941-09
  135. Whitham, S. A., Anderberg, R. J., Chisholm, S. T. and Carrington, J. C. 2000. Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12: 569-582. https://doi.org/10.1105/tpc.12.4.569
  136. Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C. and Baker, B. 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and theinterleukin-1 receptor. Cell 78: 1101-1115. https://doi.org/10.1016/0092-8674(94)90283-6
  137. Whitham, S., McCormick, S. and Baker, B. 1996. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. U.S.A. 93: 8776-8781.
  138. Woo, J. W., Kim, J., Kwon, S. I., Corvalan, C., Cho, S. W., Kim, H. et al. 2015. DNA-free genome editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nat. Biotechnol. 33: 1162-1164. https://doi.org/10.1038/nbt.3389
  139. Yamaji, Y., Maejima, K., Ozeki, J., Komatsu, K., Shiraishi, T., Okano, Y. et al. 2012. Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell 24: 778-793. https://doi.org/10.1105/tpc.111.093658
  140. Yang, P., Perovic, D., Habekub, A., Zhou R., Graner A., Ordon, F. et al. 2013. Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol. Breed. 32: 27-37. https://doi.org/10.1007/s11032-013-9842-z
  141. Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G. and Kwon, S. Y. 2014. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9: e88951.
  142. Zagrai, I., Capote, N., Ravelonandro, M., Cambra, M., Zagrai, L. and Scorza, R. 2008. Plum pox virus silencing of C5 transgenic plums is stable under challenge inoculation with heterologous viruses. J. Plant Pathol. 90: S1-S63.
  143. Zhang, X., Singh, J., Li, D. and Qu, F. 2012. Temperature-dependent survival of turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J. Virol. 86: 6847-6854. https://doi.org/10.1128/JVI.00497-12
  144. Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K. et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7: 12617. https://doi.org/10.1038/ncomms12617
  145. Zhao, D. and Song, G. Q. 2014. Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol. J. 12: 1319-1328.
  146. Zhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C. et al. 2005. The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol. 139: 1935-1945. https://doi.org/10.1104/pp.105.072306
  147. Zhu, S., Jeong, R. D., Lim, G. H., Yu, K., Wang, C., Chandra-Shekara, A. C. et al. 2013. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Rep. 4: 1168-1184. https://doi.org/10.1016/j.celrep.2013.08.018
  148. Zhu, S., Jeong, R. D., Venugopal, S. C., Lapchyk, L., Navarre, D., Kachroo, A. et al. 2011. SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog. 7: e1002318. https://doi.org/10.1371/journal.ppat.1002318
  149. Ziebell, H. and Carr, J. P. 2010. Cross-protection: a century of mystery. Adv. Virus Res. 76: 211-264.
  150. Ziebell, H., Murphy, A. M., Groen, S. C., Tungadi, T., Westwood, J. H., Lewsey, M. G. et al. 2011. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1: 187. https://doi.org/10.1038/srep00187