DOI QR코드

DOI QR Code

Involvement of Heat-stable and Proteinaceous Materials in the Culture of Pseudomonas putida JB-1 for the Inhibition of Tobacco mosaic virus Infection

  • Jeon, Yong-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Jae-Hyun (Bioresources Research Center, KT&G Central Research Institute) ;
  • Kim, Young-Ho (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2008.09.30

Abstract

Out of various fungi and bacteria tested for inhibition of Tobacco mosaic virus(TMV) infection using Nicotiana tabacum cv. Xanthi-nc, a bacterial isolate JB-l, identified as Pseudomonas putida had a strong direct inhibitory activity against the TMV infection. Its systemic or indirect activity was also noted at more than a half level of the direct control efficacy. Disease severity was reduced significantly in the susceptible tobacco N. tabacum cv. NC 82 by the treatment of the bacterial culture filtrate, somewhat more by the pretreatment than by simultaneous treatment, probably by inhibiting the TMV transmission and translocation in the plants, showing negative serological, which responses in the viral detection by DAS-ELISA. TMV-inhibitory substances from P. putida JB-1 were water-soluble, stable to high temperature(even boiling), and to a wide range of pH. As proteinase K nullified their antiviral activity, the TMV inhibition activity of P. putida may be derived from proteinaceous materials. In electron microscopy, TMV particles treated with the JB-1 culture were shown to be shrunken with granule-like particles attached on them. All of these aspects suggest that P. putida JB-1 may be developed as a potential agent for the control of TMV.

Keywords

References

  1. Agrios, G. N. 2005. Plant Pathology, Fifth Edition. Elsevier Academic Press, San Diego, CA, USA. 922 pp
  2. Aoki, M., Tan, M., Fukushima, A., Hieda, T., Kubo, S., Takabayashi, M., Ono, K. and Mikami, Y. 1993. Antiviral substances with systemic effects produced by basidiomycetes such as Fomes fomentarius. Biosci. Biotech. Biochem. 57:278-282 https://doi.org/10.1271/bbb.57.278
  3. Brosius, J., Palmet, M. L., Kennedy, P. J. and Noller, H. F. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA. 75:4801-4805 https://doi.org/10.1073/pnas.75.10.4801
  4. Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D. and Lang, H. 1974. Proteinase K from Tritirachium album Limber. Eur. J. Biochem. 47:91-97 https://doi.org/10.1111/j.1432-1033.1974.tb03671.x
  5. Gergerich, R. C. and Scott, H. A. 1988. The enzymatic function of ribonuclease determines plant virus transmission by leaf-feeding beetles. Phytopathology 78:270-272 https://doi.org/10.1094/Phyto-78-270
  6. Gergerich, R. C., Scott, H. A. and Fulton, J. P. 1986. Evidence that ribonuclease in beetle regurgitant determines the transmission of plant viruses. J. Gen. Virol. 67:367-370 https://doi.org/10.1099/0022-1317-67-2-367
  7. Gergerich, R. C., Scott, H. A. and Wickizer, S. L. 1991. Determination of host resistance to beetle transmission of plant viruses. Phytopathology 81:1326-1329 https://doi.org/10.1094/Phyto-81-1326
  8. Gessmann, R., Benos, P., Bruckner, H. and Kokkinidis, M. 1999. The crystal structures of the synthetic C-terminal octa- and dodecapeptides of trichovirin. J. Pept. Sci. 5:83-95 https://doi.org/10.1002/(SICI)1099-1387(199902)5:2<83::AID-PSC174>3.0.CO;2-U
  9. Grigoriev, P. A., Schlegel, R., Dornberger, K. and Grafe, U. 1995. Formation of membrane channels by chrysospermins, new peptaibol antibiotics. Biochim. Biophys. Acta 1237:1-5 https://doi.org/10.1016/0005-2736(95)00072-B
  10. Hara, S. and Yamakawa, M. 1996. Production in Escherichia coli of morcin, a novel type antibacterial peptide from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 220:664-669 https://doi.org/10.1006/bbrc.1996.0461
  11. Hirai, T. 1977. Action of antiviral agents. In: Plant Disease. An Advanced Treatise, Vol. 1, ed. by J. G. Horsfall and E. B. Cowling, pp. 285-306. Academic Press, New York, USA
  12. Hudson, J. B. 1990. Antiviral compounds from plants. CRC Press Inc., Boca Raton, Florida, USA. 200 pp
  13. Ito, Y., Seki, I., Tanifugi, S. and Hiramatsu, A. 1992. Inhibition of protein synthesis by antiviral protein from Yucca recurvifolia leaves. Biosci. Biotech. Biochem. 57:518-519 https://doi.org/10.1271/bbb.57.518
  14. Jeon, Y. H., Chang, S. P., Kim, S. G. and Kim, Y. H. 2006. Halo blight of kudzu vine caused by Pseudomonas syringae pv. phaseolicola in Korea. Plant Pathol. J. 22:119-124 https://doi.org/10.5423/PPJ.2006.22.2.119
  15. Kim, Y.-S., Hwang, E.-I., O, J.-H., Kim, K.-S., Ryu, M.-H. and Yeo, W.-H. 2004. Inhibitory effects of Acinetobacter sp. KTB3 on infection of Tobacco mosaic virus in tobacco plants. Plant Pathol. J. 20:293-296 https://doi.org/10.5423/PPJ.2004.20.4.293
  16. Kim, Y. H., Chae, S. Y., Park, E. K. and Lee, Y. H. 1996. Temperature conditions for inactivation of tobacco mosaic virus in dried tobacco leaf debris. J. Kor. Soc. Tob. Sci. 18:120-125
  17. Kim, Y. H., Yeo, W.-H., Kim, Y.-S., Chae, S.-Y. and Kim, K.-S. 2000. Antiviral activity of antibiotic peptaibols, chrysospermins B and D, produced by Apiocrea sp. 14T against TMV infection. J. Microbiol. Biotechnol. 10:522-528
  18. Klement, Z., Kiraly, J. and Pozsar, B. I. 1966. Suppression of virus multiplication and local lesion production in tobacco following inoculation with a saprophytic bacterium. Acta Phytopathol. Acad. Sci. Hung. 1 :11-18
  19. Lehrer, R. I., Lichtenstein, A. K. and Granz, T. 1993. Defensins: Antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11:105-128 https://doi.org/10.1146/annurev.iy.11.040193.000541
  20. Lucas, G. B. 1975. Diseases of Tobacco, Third Edition. Biological Consulting Associates, Raleigh, NC, USA. 621 pp
  21. Matsuzaki, K., Murase, O., Fujii, N. and Miyajima, K. 1995. Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34:6521-6526 https://doi.org/10.1021/bi00019a033
  22. Marcos, J. F., Beachy, R. N., Houghten, R. A., Blondelle, S. E. and Perez-Paya, E. 1995. Inhibition of a plant virus infection by analogs of melittin. Proc Natl. Acad. Sci. U.S.A. 92:12466-12469 https://doi.org/10.1073/pnas.92.26.12466
  23. Menestrina, G., Voges, K. P., Jung, G. and Boheim, G. 1986. Voltage-dependent channel formation by rods of helical polypeptides. J. Membr. Biol. 93:111-132 https://doi.org/10.1007/BF01870804
  24. Nagaoka, Y., Iida, A., Kambara, T., Asami, K., Tachikawa, E. and Fujita, T. 1996. Role of praline residue in the channel-forming and catecholamine-releasing activities of the peptaibol, trichosporin-B-VIa. Biochim. Biophys. Acta 1283:31-36 https://doi.org/10.1016/0005-2736(96)00070-3
  25. Park, E. K., Kim, Y. H., Chae, S. Y., Kang, S. W. and Lee, Y. H. 1994. Urea application on tobacco stumps for the control of tobacco mosaic virus infection. J. Kor. Soc. Tob. Sci. 16:97-101
  26. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Plant Pathogenic Bacteria, 3rd ed. APS Press, MN, USA, 373 pp
  27. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Boikesch, H., Kenney, S. and Boyd, M. R. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107-1112 https://doi.org/10.1093/jnci/82.13.1107
  28. Stevens, W. A. and Reynolds, T. 1992. Plant virus inhibitors from members of the Polygonaceae. Biomedical Letters 47:269-273
  29. Yeo, W. H., Kim, Y. H., Kim, Y. S., Kim, S. S. and Chae, S. Y. 1998. Control effects of an antibiotic produced by Streptomyces sp. B25 on tobacco mosaic virus and determination of its molecular structure. J. Kor. Soc. Tob. Sci. 20:172-177
  30. Yeo, W. H., Kim, Y. H., Park, E. K. and Kim, S. S. 1997. Physicochemical characteristics and antiviral activity of ASA, an antibiotic produced by actinomycetes B25. Korean J. Plant Pathol. 13:63-68
  31. Yun, B.-S., Yoo, I.-D., Kim, Y. H., Kim, Y.-S., Lee, S.-J., Kim, K. S. and Yeo, W.-H. 2000. Peptaivirins A and B, two new antiviral peptaibols against TMV infection. Tetrahedron Letters 41:1429-1431 https://doi.org/10.1016/S0040-4039(99)02308-4
  32. Zaitlin, M. and Israel, H. W. 1975. Tobacco mosaic virus (type strain). C.M.I./A.A.B., Description of Plant Viruses, No. 151
  33. Zhu, J., Gopinath, K., Murali, A., Yi, G., Hayqard, S. D., Zhu, H. and Kao, C. 2007. RNA-binding proteins that inhibit RNA virus infection. Proc. Natl. Acad. Sci. U.S.A. 104:3129-3134 https://doi.org/10.1073/pnas.0611617104

Cited by

  1. Anticancer and Antiviral Activity of Chlorine Dioxide by Its Induction of the Reactive Oxygen Species vol.59, pp.1, 2016, https://doi.org/10.3839/jabc.2016.007