DOI QR코드

DOI QR Code

Antifungal Activity of Eucalyptus-Derived Phenolics Against Postharvest Pathogens of Kiwifruits

  • Published : 2008.09.30

Abstract

Antifungal activities of natural substrances from Eucalyptus darlympleana, E. globules, E. gunnii and E. unigera were evaluated against postharvest pathogens of kiwifruits, Botrytis cinerea, Botryosphaeria dothidea, and Diaporthe actinidiae, to screen effective natural substances as an alternative to chemical fungicides. Methanol extract of the Eucalyptus trees showed strong antagonistic activity against the pathogenic fungi. Among them, E. unigera and E. darlympleana effectively inhibited mycelial growth of the pathogens. For chemical identification of the antifungal substances, the methanol extract of E. darlympleana leaves was successively partitioned with $CH_2Cl_2$, EtOAc, n-BuOH and $H_2O$. Among the fractions, $CH_2Cl_2$ and n-BuOH showed strong inhibitory activity of mycelial growth of the fungi. Five compounds were isolated from EtOAc and n-BuOH fractions subjected to $SiO_2$ column chromatography. Two phenolic compounds(gallic acid and 3,4-dihydroxybenzoic acid) and three flavonoid compounds(quercetin, quercetin-3-O-$\alpha$-L-rhamnoside, quercetin-3-O-$\beta$-glucoside) were identified by $^1H$-NMR and $^{13}C$-NMR spectroscopy. Among them, only gallic acid was found to be effective in mycelial growth and spore germination of B. cinerea at relatively high concentrations. The results suggest that gallic acid can be a safer and more acceptable alternative to current synthetic fungicides controlling soft rot decay of kiwifruit during postharvest storage.

Keywords

References

  1. Ahn, Y.-J., Lee, H.-S., Oh, H.-S., Kim, H.-T. and Lee, Y.-H. 2005. Antifungal activity and mode of action of Galla rhois-derived phenolics against phytopathogenic fungi. Pest. Biochem. Physiol. 81:105-112 https://doi.org/10.1016/j.pestbp.2004.10.003
  2. Bautista-Bauos, S., Long, P. G. and Ganeshanandam, S. 1995. Physiological changes in kiwifruit during a curing period and incidence of Botrytis cinerea during storage. Acta Hort. 398:233-240
  3. Bautista-Bauos, S., Long, P. G. and Ganesh, S. 1997. Curing of kiwifruit for control of postharvest infection by Botrytis cinerea. Postharvest Biol. Technol. 12:137-145 https://doi.org/10.1016/S0925-5214(97)00043-4
  4. Bisignano, G., Sanogo, R., Marino, A., Aqino, R., D'Angelo, V., German, O. M. P., De Pasquale, R. and Pizza, C. 2000. Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Lett. Appl. Microbiol. 30:105-108 https://doi.org/10.1046/j.1472-765x.2000.00692.x
  5. Bluma, R., Amaiden, M. R. and Etchverry, M. 2008. Screening of Argentine plant extracts: Impact on growth parameters and aflatoxin $B_1$ accumulation by Aspergillus section Flavi. Int. J. Food Microbiol. 122:114-125 https://doi.org/10.1016/j.ijfoodmicro.2007.11.050
  6. Cheah, L. H., de Silva, N., Irving, D. E., Hunt, A. W. and Tate, K. G. 1992. Hot water dips for control of Botrytis cinerea storage rot in kiwifruit. Acta Hort. 297:605-609
  7. Delaquis, P. J., Stanich, K., Girard, B. and Mazza, G. 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 74:101-109 https://doi.org/10.1016/S0168-1605(01)00734-6
  8. Hur, J.-S., Ahn, S. Y., Koh, Y. J. and Lee, C. I. 2000. Antimicrobial properties of cold-tolerant Eucalyptus species against phyto-pathogenic fungi and food-borne bacterial pathogens. Plant Pathol. J. 16:286-289
  9. Lee, J. G., Lee, D. H., Park, S. Y., Hur, J.-S. and Koh, Y. J. 2001 First report of Diaporthe actinideae, the causal organism of stem-end rot of kiwifruit in Korea. Plant Pathol. J. 110-113
  10. Liu, Z., Ma, L., Zhou, B., Yang, L. and Liu, Z. L. 2000. Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem. Physics Lipids. 106:53-63 https://doi.org/10.1016/S0009-3084(00)00133-X
  11. Mehlhorn, H. and Wellburn, A. R. 1987. Stress ethylene determines plant sensitivity to ozone. Nature 327:417-418 https://doi.org/10.1038/327417a0
  12. Niklis, N., Sfakiotakis, E. and Thanassoulopoulos, C. C. 1997. Ethylene production by Botrytis cinerea, kiwifruit and Botrytis rotted kiwifruit under several storage temperatures. Acta Hort. 444:733-737
  13. Pak, H. A., Beever, R. E. and Laracy, E. P. 1990. Population dynamics of dicarboximide-resistant strains of Botrytis cinerea on grapevine in New Zealand. Plant Pathol. 39:501-509 https://doi.org/10.1111/j.1365-3059.1990.tb02526.x
  14. Park, J. C., Park, J. G., Hur, J.-S., Choi, M. R., Yoo, E. J., Kim, S. H., Son, J. C. and Kim, M. S. 2004. Inhibitory effects of methanol extract, phenolic acids and flavonoids from the leaves of Eucalyptus darlympleana against 1,1-Diphenyl-2-picrylhydrazyl radical. Natual Product Sciences 10:244-247
  15. Pattnaik, S., Subramanyam, V. R. and Kole, C. 1996. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios. 86:237-246
  16. Poole, P. R. and McLeod, L. C. 1992. Inhibition of Botrytis cinerea infection in kiwifruit tissues. Acta Hort. 297:159-164
  17. Pyke, N. A., Manktelow, D., Elmer, P. and Tate, K. G. 1994. Post harvest dipping of kiwifruit iprodione to control stem end rot caused by Botrytis cinerea. Newzland. J. Crop Hortic. Sci. 22:81-86 https://doi.org/10.1080/01140671.1994.9513808
  18. Qadir, A., Hewett, E. W. and Long, P. G. 1997. Ethylene production by Botrytis cinerea. Postharvest Biol. Technol. 11:85-91 https://doi.org/10.1016/S0925-5214(97)00016-1
  19. Rahman, M. M., Lopa, S. S., Sadik, G., Rashid, H.-O., Islam, R., Khondkar, P., Alam, A. H. M. K. and Rashid, M. 2005. Antibacterial and cytotoxic compounds from the bark of Conaga odorata. Fitoterpia 76:758-761 https://doi.org/10.1016/j.fitote.2005.08.011
  20. Ramezani, H., Singh, H. P., Batish, D. R. and Kohli, R. K. 2002. Antifungal activity of the volatile oil of Eucalyptus citriodora. Eitoterapia 73:261-262
  21. Regoli, F. and Winston, G. W. 1999. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol. Appl. Pharmacol. 156:96-105 https://doi.org/10.1006/taap.1999.8637
  22. Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M. and Bruni, R. 2005. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem. 91:621-632 https://doi.org/10.1016/j.foodchem.2004.06.031
  23. Schelz, Z., Molnar, J. and Hohmann, J. 2006. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77:279-285 https://doi.org/10.1016/j.fitote.2006.03.013
  24. Sharma, V. P. and Jandaik, C. L. 1995. Effect of some plant materials in controlling different moulds in Agaricus bisporus (Lange) Imbach. Indian J. Mycol. Plant Pathol. 24:183-185
  25. Shukla, Y. N., Srivastava, A., Kumar, S. and Kumar, S. 1999. Phytotoxic and antimicrobial constitutes of Argyreia speciosa and Oenothera biennis. J. Ethnopharmacol. 67:241-245 https://doi.org/10.1016/S0378-8741(99)00017-3
  26. Yang, S. F. and Hoffman, N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35:155-189 https://doi.org/10.1146/annurev.pp.35.060184.001103
  27. Zhang, Y. and Lewis, K. 1997. Fabatins: new antimicrobial plant peptides. FEMS Microbiol. Lett. 149:59-64 https://doi.org/10.1111/j.1574-6968.1997.tb10308.x

Cited by

  1. In vitro antifungal activity of flavonoid diglycosides of Mentha piperita and their oxime derivatives against two cereals fungi vol.19, pp.7, 2016, https://doi.org/10.1016/j.crci.2015.11.023
  2. Ethnopharmacological evaluation and antioxidant activity of some important herbs used in traditional medicines vol.36, pp.5, 2016, https://doi.org/10.1016/S0254-6272(16)30091-7
  3. Biological control of postharvest diseases of apples, peaches and nectarines byBacillus subtilisS16 isolated from halophytes rhizosphere vol.22, pp.3, 2012, https://doi.org/10.1080/09583157.2012.658553
  4. Exogenous Applications of Abscisic Acid Increase Curing of Pierce's Disease-Affected Grapevines Growing in Pots vol.95, pp.2, 2011, https://doi.org/10.1094/PDIS-06-10-0446
  5. Total phenolic content, in vitro antioxidant activity and chemical composition of plant extracts from semiarid Mexican region vol.8, pp.2, 2015, https://doi.org/10.1016/S1995-7645(14)60299-6
  6. Effects of different extraction methods on total phenolic content and antioxidant activity in soybean cultivars vol.102, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/102/1/012039