DOI QR코드

DOI QR Code

Additive Main Effects and Multiplicative Interaction Analysis of Host-Pathogen Relationship in Rice-Bacterial Blight Pathosystem

  • Published : 2008.09.30

Abstract

Host-pathogen interaction in rice bacterial blight pathosystem was analyzed for a better understanding of their relationship and recognition of stable pathogenicity among the populations of Xanthomonas oryzae pv. oryzae. A total number of 52 bacterial strains isolated from diseased leaf samples collected from 12 rice growing states and one Union Territory of India, were inoculated on 16 rice varieties, each possessing known genes for resistance. Analysis of variance revealed that the host genotypes(G) accounted for largest(78.4%) proportion of the total sum of squares(SS), followed by 16.5% due to the pathogen isolates(I) and 5.1% due to the $I{\times}G$ interactions. Application of the Additive Main effects and Multiplicative Interaction(AMMI) model revealed that the first two interaction principal component axes(IPCA) accounted for 66.8% and 21.5% of the interaction SS, respectively. The biplot generated using the isolate and genotypic scores of the first two IPCAs revealed groups of host genotypes and pathogen isolates falling into four sectors. A group of five isolates with high virulence, high absolute IPCA-1 scores, moderate IPCA-2 scores, low AMMI stability index '$D_i$' values and minimal deviations from additive main effects displayed in AMMI biplot as well as response plot, were identified as possessing stable pathogenicity across 16 host genotypes. The largest group of 27 isolates with low virulence, small IPCA-1 as well as IPCA-2 scores, low $D_i$ values and minimal deviations from additive main effect predictions, possessed stable pathogenicity for low virulence. The AMMI analysis and biplot display facilitated in a better understanding of the host-pathogen interaction, adaptability of pathogen isolates to specific host genotypes, identification of isolates showing stable pathogenicity and most discriminating host genotypes, which could be useful in location specific breeding programs aiming at deployment of resistant host genotypes in bacterial blight disease control strategies.

Keywords

References

  1. Abamu, F. J., Akinsola, E. A. and Alluri, K. 1998. Applying the AMMI models to understand genotype-by-environment (GE) interactions in rice reaction to blast disease in Africa. Int. J. Pest Management 44:239-245 https://doi.org/10.1080/096708798228167
  2. Adhikari, T. B., Mew, T. W. and Leach, J. E. 1999. Genotypic and pathotypic diversity in Xanthomonas oryzae pv. oryzae in Nepal. Phytopathology 89:687-694 https://doi.org/10.1094/PHYTO.1999.89.8.687
  3. Adhikari, T. B., Vera cruz, C. M., Zhang, Q., Nelson, R. J., Skinner, D. Z., Mew, T. W. and Leach, J. E. 1995. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl. Environ. Microbiol. 61:966-971
  4. Ardales, E. Y., Leung, H., Vera cruz, C. M., Mew, T. W., Leach, J. E. and Nelson, R. J. 1996. Hierarchical analysis of spatial variation of the rice bacterial blight pathogen across diverse agroecosystems in the Philippines. Phytopathology 86:241-252 https://doi.org/10.1094/Phyto-86-241
  5. Crossa, J., Gauch, H. G. Jr. and Zobel, R. W. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30:493-500 https://doi.org/10.2135/cropsci1990.0011183X003000030003x
  6. Eberhart, S. A. and Russell, W. A. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36-40 https://doi.org/10.2135/cropsci1966.0011183X000600010011x
  7. Ezuka, A. and Horino, O. 1974. Classification of rice varieties and Xanthomonas oryzae strains on the basis of their differential interaction. Bull. Tokai Kinki Natl. Agric. Exp. Stn. 27:1-19
  8. Ezuka, A. and Kaku, H. 2000. A historical review of bacterial blight of rice. Bull. Natl. Inst. Agrobiol. Resour. 15:1-207
  9. Faris, M. A., Lira, de A. and Leao Viega, A. F. de S. 1979. Stability of sorghum midge resistance. Crop Sci. 19:577-580 https://doi.org/10.2135/cropsci1979.0011183X001900050006x
  10. Finlay, K. W. and Wilkinson, G. N. 1963. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14:742-754 https://doi.org/10.1071/AR9630742
  11. Flores, F., Moreno, M. T., Martinez, A. and Cubero, J. I. 1996. Genotype-environment interaction in faba bean : comparison of AMMI and principal coordinate models. Field Crops Res. 47:117-127 https://doi.org/10.1016/0378-4290(96)00032-9
  12. Forbes, G. A., Chacon, M. G., Kirk, H. G., Huarte, M. A., van Damme, M., Distel, S., Mackay, G. R., Stewart, H. E., Lowe, R., Duncan, J. M., Mayton, H. S., Fry, W. E., Andrevon, D., Ellisseche, D., Pelle, R., Platt, H. W., Mackenzie, G., Tam, T. R., Colon, L. T., Budding, D. J., Lozoya-Saldana, H., Hemandez-Vilchis, A. and Capezio, S. 2005. Stability of resistance to Phytophthora infestans in potato: an international evaluation. Plant Pathology 54:364-372 https://doi.org/10.1111/j.1365-3059.2005.01187.x
  13. Freeman, G. H. and Perkins, J. M. 1971. Environmental and genotype environmental components of variability. VIII. Relations between genotypes grown in different environments and measure of these environments. Heredity 26:15-23
  14. Gabriel, K. R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453-467 https://doi.org/10.1093/biomet/58.3.453
  15. Gauch, H. G. and Zobel, R. W. 1996. AMMI analysis of yield trials. In: Genotype by Environment Interaction, ed. by M.S. Kang, and H. G. Gauch, pp. 85-122. CRC Press, Boca Raton, FL
  16. Gu, K., Tian, D., Yang, F., Wu, L., Sreekala, C., Wang, D., Wang, G. L. and Yin, Z. 2004. High-resolution genetic mapping of Xa 27 (t), Theor. Appl. Genet. 108:800-807 https://doi.org/10.1007/s00122-003-1491-x
  17. Hamid, A. H., Ayers, J. E. and Hill, R. R. Jr. 1982. HostXisolate interactions in corn inbreds inoculated with Cochliobolus carbonum race-3. Phytopathology 72:1169-1173 https://doi.org/10.1094/Phyto-72-1169
  18. Gupta, A. K., Sharma, S. C. and Saini, R. G. 1986. Variation in pathogenicity of some Indian isolates of Xanthomonas oryzae pv. oryzae. Phytopathology 76:881-883 https://doi.org/10.1094/Phyto-76-881
  19. Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y. and Merca, S. D. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 57:537-541
  20. Leach, J. E., Rhoads, M. L., Vera cruz, C. M., White, F. F., Mew, T. W. 1992: Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Appl. Environ. Microbiol. 58:2188-2195
  21. Leonard, K. J. and Moll, R. H. 1979. Durability of general resistance: Evaluation of cultivarXisolate interactions. In: Proc. Symp. IX International Congress of Plant Protection, Vol.1, pp. 190-193. Washington D.C., USA
  22. Li, W., Yan, Z. H., Wei, Y. M., Lan, X. J. and Zheng, Y. L. 2006. Evaluation of genotype x environment interaction in Chinese spring wheat by the AMMI model, correlation and path analysis. J. Agron. Crop Sci. 192:221-227 https://doi.org/10.1111/j.1439-037X.2006.00200.x
  23. Mew, T. W. 1987. Current status and future prospects of research on bacterial blight of rice. Annu. Rev. Phytopathol. 25:359-382 https://doi.org/10.1146/annurev.py.25.090187.002043
  24. Mew, T. W. and Vera Cruz, C. M. 1979. Variability in Xanthomonas oryzae : Specificity in infection of rice differentials. Phytopathology 69:152-155 https://doi.org/10.1094/Phyto-69-152
  25. Mew, T. W., Vera Cruz, C. M. and Medalla, E. S. 1992. Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis. 76:1029-1032 https://doi.org/10.1094/PD-76-1029
  26. Nayak, P. 1986a. Host-pathogen interaction in bacterial blight pathosystem in rice. Acta Phytopathologica et. Entomologica Hungarica 21:109-114
  27. Nayak, P. 1986b. Impact of host-resistance on the variability in virulence of Xanthomonas campestris pv. oryzae. Phytopath. Z. 116:162-166 https://doi.org/10.1111/j.1439-0434.1986.tb00906.x
  28. Nayak, P. and Chakabarti, N. K. 1985. Stable pathogenicity in Xanthomonas campestris pv. oryzae. Int. J. Tropical Plant Diseases 3:183-188
  29. Nayak, P. and Chakrabarti, N. K. 1986. Stable resistance to bacterial blight disease in rice. Ann. Appl. Biol. 109:179-186 https://doi.org/10.1111/j.1744-7348.1986.tb03197.x
  30. Nayak, D., Reddy, P. R. and Nayak, P. 2008a. Variability in Xanthomonas oryzae pv. oryzae, the incitant of bacterial blight disease of rice. J. Plant Protection Res. 48 (in press)
  31. Nayak, D., Bose, L. K., Reddy, P. R. and Nayak, P. 2008b. Hostpathogen interaction in rice-bacterial blight pathosystem. J.Plant Protection Res. 48 (in press)
  32. Nayak, D., Bose, L. K., Singh, U. D., Singh, S. and Nayak, P. 2008c. Measurement of genetic diversity of virulence in populations of Xanthomonas oryzae pv. oryzae in India. Communications in Biometry and Crop Sci. 3:16-28
  33. Nelson, R. J., Baraoidan, M. R., Vera cruz, C. M., Yap, I. V., Leach, J. E., Mew, T. W. and Leung, H. 1994. Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl. Environ. Microbiol. 60:3275-3283
  34. Ogawa, T. 1993. Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (Xanthomonas oryzae pv. oryzae) in rice. Japan Agric. Res. Quarterly 27:78-80
  35. Onasanya, A., Sere, Y., Nwilene, F., Abo, M. E. and Akator, K. 2004. Reactions and resistance status of differential rice genotypes to rice yellow mottle virus, Genus Sobemovirus in Cote d'Ivoire. Asian J. Plant Sci. 3:718-723 https://doi.org/10.3923/ajps.2004.718.723
  36. Perkins, J. M. and Jinks, J. L. 1968. Environmental and genotype environmental components of variability. III. Multiple lines and crosses. Heredity 23:239-256 https://doi.org/10.1038/hdy.1968.31
  37. Robinson, J. and Jalli, M. 1999. Sensitivity of resistance to net blotch in barley. J. Phytopath. 147:235 https://doi.org/10.1046/j.1439-0434.1999.147004235.x
  38. Samonte, S. O. P. B., Wilson, L. T., Mcclung, A. M. and Medley, J. C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Sci. 45:2414-2424 https://doi.org/10.2135/cropsci2004.0627
  39. Samuel, C. J. K., Hill, J., Breese, E. L. and Davis, A. 1970. Assessing and predicting environmental response in Lolium perenne. J. Agric. Sci. Camb. 75:1-9 https://doi.org/10.1017/S0021859600025983
  40. Schneider, J. H. M. and Van Den Boogert, P. H. J. F. 1999. Exploring differential interactions between Rhizoctonia solani AG 2-t isolates and tulip cultivars. Plant Dis. 83:474-481 https://doi.org/10.1094/PDIS.1999.83.5.474
  41. Shanti, M. L., George, M. L. C., Vera cruz, C. M., Bernardo, M. A., Nelson, R. J., Leung, H., Reddy, J. N. and Sridhar, R. 2001. Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis. 85:506-512 https://doi.org/10.1094/PDIS.2001.85.5.506
  42. Singh, J. 1975. Relative disease reaction in maize varieties to downy mildews over varied environments. In: Proc. Symp. Trop. Agric. Res., Series, No. 8, pp. 129-154. Trop. Agric. Res. Center, Tokyo, Japan
  43. van der Plank, J. E. 1971. Stability of resistance to Phytophthora infestans in cultivars without R genes. Potato Res. 14:263-270 https://doi.org/10.1007/BF02355989
  44. Wescott, B. 1985. Some methods of analyzing genotype environment interactions. Heridity 56:243-253 https://doi.org/10.1038/hdy.1986.37
  45. Yan, W. and Falk, D. E. 2002. Biplot analysis of host-by-pathogen data. Plant Dis. 86:1396-1401 https://doi.org/10.1094/PDIS.2002.86.12.1396
  46. Yan, W., Hunt, L. A., Sheng, Q. and Szlavnics, Z. 2000. Cultivar evaluation and mega environment investigation based on GGE biplot. Crop Sci. 40:597-605 https://doi.org/10.2135/cropsci2000.403597x
  47. Yashitola, J., Krishnaveni, D., Reddy, A. P. K. and Sonti, R. V. 1997. Genetic diversity within the population of Xanthomonas oryzae pv. oryzae in India. Phytopathology 87:760-765 https://doi.org/10.1094/PHYTO.1997.87.7.760
  48. Zhang, Z., Lu, C. and Xiang, Z. H. 1998. Stability analysis for varieties by AMMI model. Acta Agron. Sin. 24:304-309
  49. Zobel, R. W., Wright, M. J. and Gauch, H. G. Jr. 1988. Statistical analysis of yield trial. Agron. J. 80:388-393 https://doi.org/10.2134/agronj1988.00021962008000030002x

Cited by

  1. Evaluation of Genotype × Environment Interaction in Rice Based on AMMI Model in Iran vol.24, pp.3, 2017, https://doi.org/10.1016/j.rsci.2017.02.001
  2. Phenotypic and molecular genetic characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum vol.60, pp.2, 2011, https://doi.org/10.1111/j.1365-3059.2010.02373.x
  3. Pathogenic diversity of Xanthomonas oryzae pv. oryzae isolates collected from Punjab Province of Pakistan vol.147, pp.3, 2017, https://doi.org/10.1007/s10658-016-1032-5
  4. Grain Yield and Charcoal Rot Resistance Stability in Common Beans under Terminal Drought Conditions vol.160, pp.2, 2012, https://doi.org/10.1111/j.1439-0434.2011.01864.x
  5. Screening for blast resistance in rice using AMMI models to understand G x E interaction in Guyana vol.46, pp.4, 2018, https://doi.org/10.1007/s12600-018-0681-7