• Title/Summary/Keyword: virulence gene

Search Result 318, Processing Time 0.024 seconds

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.705-713
    • /
    • 2016
  • The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Prevalence and Characterization of Virulence Genes in Escherichia coli Isolated from Diarrheic Piglets in Korea

  • Kim, Sung Jae;Jung, Woo Kyung;Hong, Joonbae;Yang, Soo-Jin;Park, Yong Ho;Park, Kun Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.271-278
    • /
    • 2020
  • Enterotoxigenic Escherichia coli is one of the major causative infectious agents of diarrhea in newborn and post-weaning pigs and leads to a large economic loss worldwide. However, there is limited information on the distribution and characterization of virulence genes in E. coli isolated from diarrheic piglets, which also applies to the current status of pig farms in Korea. To investigate the prevalence and characterization of virulence genes in E. coli related to diarrhea in piglets, the rectal swab samples of diarrheic piglets (aged 2 d to 6 w) were collected from 163 farms between 2013 and 2016. Five to 10 individual swab samples from the same farm were pooled and cultured on MacConkey agar plates, and E. coli were identified using the API 32E system. Three sets of multiplex PCRs were used to detect 13 E. coli virulence genes. As a result, a total of 172 E. coli isolates encoding one or more of the virulence genes were identified. Among them, the prevalence of individual virulence gene was as follows, (1) fimbrial adhesins (43.0%): F4 (16.9%), F5 (4.1%), F6 (1.7%), F18 (21.5%), and F41 (3.5%); (2) toxins (90.1%): LT (19.2%), STa (20.9%), STb (25.6%), Stx2e (15.1%), EAST1 (48.3%); and (3) non-fimbrial adhesin (19.6%): EAE (14.0%), AIDA-1 (11.6%) and PAA (8.7%), respectively. Taken together, various pathotypes and virotypes of E. coli were identified in diarrheic piglets. These results suggest a broad array of virulence genes is associated with coliform diarrhea in piglets in Korea.

Genetic Relationship between SCCmec Types and Virulence Factors of Methicillin-Resistant Staphylococcus aureus Clinical Isolates in Korea

  • Lim, Kwan-Hun;Lee, Gyu-Sang;Park, Min;Lee, Jin-Hee;Suh, In-Bum;Ryu, Sook-Won;Eom, Yong-Bin;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • The molecular epidemiological characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolates have demonstrated their genetic diversity and evolution. A total of 137 strains of MRSA clinical isolates was collected from Korean healthcare facility in 2007. The MRSA clinical isolates were analyzed by molecular typings (SCCmec element and agr locus typing), virule nce factor gene detections {(Panton-Valentine leukocidin (PVL), enterotoxin, exfoliative toxin and toxic shock syndrome toxin-1), and amplified fragment length polymorphism (AFLP)}. The MRSA clinical isolates were classified as SCCmec type II-agr type 1 (2 strains), type II-agr type 2 (79 strains), type III-agr type 1 (24 strains), type III-agr type 2 (2 strains), type IV-agr type 1 (27 strains), type IV-agr type 2 (2 strains), and non-typable (1 strain, agr type 3). Based on SCCmec types, SCCmec type II (95.1%) and III (88.5%) indicated higher multidrug resistance rate than SCCmec type IV (10.3%) (P<0.001). The most common enterotoxin genes were seg (83.8%), sei (83.1%), and sec (80.2%). The tst gene was present in 86 out of 137 (62.8%) MRSA isolates. All MRSA isolates were negative for PVL and exfoliative toxin genes. The combinations of toxin genes were observed in particular SCCmec types; 97.6% of SCCmec type II strains carried sec, seg, sei and tst genes, 73.0% of SCCmec type III strains carried sea gene, and 89.7% of SCCmec type IV strains carried sec, seg and sei genes. Each of the SCCmec types of MRSA isolates had distinct AFLP profile. In conclusion, SCCmec type II, agr type 1 and 2 have demonstrated to be the most common types in Korea, and the results indicated that the virulence factors are closely associated with their molecular types (SCCmec and agr types).

Purification and Characterisation of a Burkholderia pseudomallei Protease Expressed in Recombinant E. coli

  • Ling, Jessmi M.L.;Nathan, Sheila;Hin, Lee Kok;Mohamed, Rahmah
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.509-516
    • /
    • 2001
  • A genomic DNA fragment that contains the gene, which codes for a novel extracellular serine protease in Burkholderia pseudomallei, was cloned by using pQE40 as a vector. It was maintained in Escherichia coli JM109. The expression of the gene(s) resulted in the production of a 52 kDa protease. The recombinant protease was purified from the culture filtrate via ammonium sulfate fractionation, gel filtration, and anion-exchange chromatography. The purified protease had an optimum pH and temperature of pH 8.9 and $38^{\circ}C$, respectively. The protease activity was inhibited by EGTA, EDTA, and PMSF, but not 1,10-phenanthroline. The first 11 amino acid residues from the N-terminus of the purified protease were identified as LAPNDPYYYGY. PNDPYY was found to show homology to the Bacillus cereus microbial serine protease and B. subtilis PD498 serine protease. These results indicate that the protease that was purified in this study is an extracellular calcium-dependent serine protease. The purified protease was able to digest the human serum 19A, IgG, albumin, and transferrin, as well as bovine muscle actin and myosin. Furthermore, it was able to promote or cause dermonecrosis in experimental rabbits. These results propose the possible role of a novel B. pseudomallei extracellular calcium-dependent serine protease in the virulence of the pathogen.

  • PDF

Application of the rpoS Gene for Species-Specific Detection of Vibrio vulnificus by Real-Time PCR

  • Kim, Dong-Gyun;Ahn, Sun-Hee;Kim, Lyoung-Hwa;Park, Kee-Jai;Hong, Yong-Ki;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1841-1847
    • /
    • 2008
  • Vibrio vulnificus is a causative agent of serious diseases in humans, resulting from the contact of wound with seawater or consumption of raw seafood. Several studies aimed at detecting V. vulnificus have targeted vvh as a representative virulence toxin gene belonging to the bacterium. In this study, we targeted the rpoS gene, a general stress regulator, to detect V. vulnificus. PCR specificity was identified by amplification of 8 V. vulnificus templates and by the loss of a PCR product with 36 non-V. vulnificus strains. The PCR assay had the 273-bp fragment and the sensitivity of 10 pg DNA from V. vulnificus. SYBR Green I-based real-time PCR assay targeting the rpoS gene showed a melting temperature of approximately $84^{\circ}C$ for the V. vulnificus strains. The minimum level of detection by real-time PCR was 2 pg of purified genomic DNA, or $10^3$ V. vulnificus cells from pure cultured broth and $10^3$ cells in 1 g of oyster tissue homogenates. These data indicate that real-time PCR is a sensitive, species-specific, and rapid method for detecting this bacterium, using the rpoS gene in pure cultures and in infected oyster tissues.

The Effect of Transformation on the Virulence of Streptococcus pneumoniae

  • Zhang Xue-Mei;Yin Yi-Bing;Zhu Dan;Chen Bao-De;Luo Jin-Yong;Deng Vi-Ping;Liu Ming-Fang;Chen Shu-Hui;Meng Jiang-Ping;Lan Kai;Huang Yuan-Shuai;Kang Ge-Fei
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.337-344
    • /
    • 2005
  • Although pneumococcus is one of the most frequently encountered opportunistic pathogen in the world, the mechanisms responsible for its infectiveness have not yet been fully understood. In this paper, we have attempted to characterize the effects of pneumococcal transformation on the pathogenesis of the organism. We constructed three transformation-deficient pneumococcal strains, which were designated as Nos. 1d, 2d, and 22d. The construction of these altered strains was achieved via the insertion of the inactivated gene, comE, to strains 1, 2 and 22. We then conducted a comparison between the virulence of the transformation-deficient strains and that of the wild-type strains, via an evaluation of the ability of each strain to adhere to endothelial cells, and also assessed psaA mRNA expression, and the survival of hosts after bacterial challenge. Compared to what was observed with the wild-type strains, our results indicated that the ability of all of the transformation-deficient strains to adhere to the ECV304 cells had been significantly reduced (p < 0.05), the expression of psaA mRNA was reduced significantly (p < 0.05) in strains 2d and 22d, and the median survival time of mice infected with strains Id and 2d was increased significantly after intraperitoneal bacterial challenge (p < 0.05). The results of our study also clearly indicated that transformation exerts significant effects on the virulence characteristics of S. pneumoniae, although the degree to which this effect is noted appears to depend primarily on the genetic background of the bacteria.

Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis

  • Kim, Ga-Yeon;Lee, Chong Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.6
    • /
    • pp.223-228
    • /
    • 2015
  • Purpose: The goal of this study was to characterize the patterns of antimicrobial resistance and virulence genes in samples of Staphylococcus aureus (S. aureus) isolated from periodontitis patients. Methods: From July 2015 to August 2015, oral saliva was collected from a total of 112 patients diagnosed with periodontitis, including 80 outpatients in dental hospitals and 32 patients in dental clinics located in Seoul and Cheonan. The samples were subjected to a susceptibility test to evaluate the prevalence of antimicrobial resistance, and the pathogenic factors and antimicrobial resistance factors in the DNA of S. aureus were analyzed using polymerase chain reaction. Results: A susceptibility test against 15 antimicrobial agents showed that 88% of cultures were resistant to ampicillin, 88% to penicillin, and 2% to oxacillin. Resistance to at least two drugs was observed in 90% of cultures, and the most common pattern of multidrug resistance was to ampicillin and penicillin. Enterotoxins were detected in 65.9% of samples. The cell hemolysin gene hld was detected in 100% of cultures and hla was detected in 97.6% of samples. All strains resistant to penicillin and ampicillin had the blaZ gene. The aph(3')IIIa gene, which encodes an aminoglycoside modifying enzyme, was detected in 46.3% of samples. Conclusions: In the treatment of oral S. aureus infections, it is important to identify the pathogenic genes and the extent of antimicrobial resistance. Furthermore, it is necessary to study patterns of antimicrobial resistance and cross-infection in the context of periodontological specialties in which antimicrobials are frequently used, such as maxillofacial surgery, where the frequency of antimicrobial use for minor procedures such as implant placement is increasing.

The Gene fpk1, Encoding a cAMP-dependent Protein Kinase Catalytic Subunit Homolog, is Required for Hyphal Growth, Spore Germination, and Plant Infection in Fusarium verticillioides

  • Pei-Bao, Zhao;Ren, Ai-Zhi;Xu, Hou-Juan;Li, Duo-Chuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.208-216
    • /
    • 2010
  • Fusarium verticillioides is an important pathogen of maize, being responsible for ear rots, stalk rots, and seedling blight worldwide. During the past decade, F. verticillioides has caused several severe epidemics of maize seedling blight in many areas of China, which lead to significant losses. In order to understand the molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized the gene fpk1 (GenBank Accession No. EF405959) encoding a homolog of the cAMP-dependent protein kinase catalytic subunit, which included a 1,854-bp DNA sequence from ATG to TAA, with a 1,680-bp coding region, and three introns (lengths: 66 bp, 54 bp, and 54 bp), and the predicated protein precursor had 559 aa. The mutant ${\Delta}fpk1$, which was disrupted of the fpkl gene, showed reduced vegetative growth, fewer and shorter aerial mycelia, strongly impaired conidiation, and reduced spore germination rate. After germinating, the fresh hypha was stubby and lacking of branch. When inoculated in susceptible maize varieties, the infection of the mutant ${\Delta}fpk1$ was delayed and the infection efficiency was reduced compared with that of the wild-type strain. AU this indicated that gene fpk1 participated in hyphal growth, conidiophore production, spore germination, and virulence in F. verticillioides.

Direct Identification of Vibrio vulnificus by PCR Targeting Elastase Gene

  • Lee, Jae-Won;Jun, In-Joon;Kwun, Hyun-Jin;Jang, Kyung-Lib;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.284-289
    • /
    • 2004
  • A PCR assay for the rapid detection of Vibrio vulnificus strains was developed using a virulence gene for elastase found in various Vibrio species. The DNA sequences in the elastase gene facilitated the identification of a species-specific probe for pathogenic V. vulnificus strains from both clinical and environmental sources. Using an elastase gene-based PCR reaction, a species-specific 507-bp PCR product was visualized by agarose gel electrophoresis. Three different DNA extraction methods were then compared to improve the simplicity and rapidity of detection. A PCR assay using the conventional DNA extraction or boiling method was able to detect as few as 25 V. vulnificus cells, making the detection limits at least 1-log-scale lower than that for the EDT A-treated DNA extraction method. In particular, the boiling method, which does not require purification of the chromosomal DNA, was very effective in terms of simple and rapid detection. Meanwhile, the detection limit in a mixed bacterial culture that included other bacteria, such as Escherichia coli or Bacillus subtilis, was two V. vulnificus cells, which was 1-log-scale lower than that for the control. Accordingly, when coupled with a new DNA extraction method, the elastase gene-based PCR can provide a rapid, specific, and sensitive method for identifying V. vulnificus in clinical and environmental samples.