DOI QR코드

DOI QR Code

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin (Institute of Agricultural Life Sciences, Dong-A University)
  • Received : 2016.06.28
  • Accepted : 2016.08.11
  • Published : 2016.09.30

Abstract

The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

Keywords

References

  1. Abu-Hamad, S., Sivan, S., and Shoshan-Barmatz, V. (2006). The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc. Natl. Acad. Sci. USA 103, 5787-5792. https://doi.org/10.1073/pnas.0600103103
  2. Anand, A., Vaghchhipawala, Z., Ryu, C.M., Kang, L., Wang, K., Del-Pozo, O., Martin, G.B., and Mysore, K.S. (2007a). Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol. Plant-Microbe Interact. 20, 41-52. https://doi.org/10.1094/MPMI-20-0041
  3. Anand, A., Krichevsky, A., Schornack, S., Lahaye, T., Tzfira, T., Tang, Y., Citovsky, V., and Mysore, K.S. (2007b). Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19, 1695-708. https://doi.org/10.1105/tpc.106.042903
  4. Baines, C.P., Kaiser, R.A., Sheiko, T., Craigen, W.J., and Molkentin, J.D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550-555. https://doi.org/10.1038/ncb1575
  5. Bent, A., and Clough, S. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  6. Blachly-Dyson, E., Song, J., Wolfgang, W., Colombini, M., and Forte, M. (1997). Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol. Cell Biol. 17, 5727-5783. https://doi.org/10.1128/MCB.17.10.5727
  7. Bundock, P., Den Dulk-Ras, A., Beifersbergen, A., and Hooykaas, P. (1995). Transkingdom T-DNA transfer Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206-3214.
  8. Chateau, S., Sangwan, R.S., and Sangwan-Norreel, B.S. (2000). Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J. Exp. Bot. 51, 1961-1968. https://doi.org/10.1093/jexbot/51.353.1961
  9. Cheng, E.H., Sheiko, T.V., Fisher, J.K., Craigen, W.J., and Korsmeyer, S.J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513-517. https://doi.org/10.1126/science.1083995
  10. Crane, Y.M., and Gelvin, S.B. (2007). RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc. Natl. Acad. Sci. USA 104, 15156-15161. https://doi.org/10.1073/pnas.0706986104
  11. De Buck, S., De Wilde, C., Van Montagu, M., and Depicker, A. (2000). Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol. Plant-Microbe Interact. 13, 658-665. https://doi.org/10.1094/MPMI.2000.13.6.658
  12. Ditt, R.F., Kerr, K.F., De Figueiredo, P., Delrow, J., Comai, L., and Nester, E.W. (2006). The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol. Plant-Microbe Interact. 19, 665-681. https://doi.org/10.1094/MPMI-19-0665
  13. Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., and Hirt, H. (2007). Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318, 453-456. https://doi.org/10.1126/science.1148110
  14. Geier, T., and Sangwan, R. (1996). Histology and chemical segregation reveal cell-specific differences in the competence for regeneration and Agrobacterium-mediated transformation in Kohlera internode explants. Plant Cell Rep. 15, 386-390. https://doi.org/10.1007/BF00232060
  15. Gelvin, S.B. (2010). Plant proteins involved in Agrobacteriummediated genetic transformation. Annu. Rev. Phytopathol. 48, 45-68. https://doi.org/10.1146/annurev-phyto-080508-081852
  16. Gelvin, S.B. (2012). Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. Front Plant Sci. 3, 52.
  17. Gouka, R., Gerk, C., Hooykaas, P., Bundock, P., Kusters, W., Verrips, C., and De Groot, M. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 17, 598-601. https://doi.org/10.1038/9915
  18. Hansen, G. (2000). Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant-Microbe Interact. 13, 649-657. https://doi.org/10.1094/MPMI.2000.13.6.649
  19. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98, 1871-1876. https://doi.org/10.1073/pnas.98.4.1871
  20. Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int. J. Dev. Biol. 57, 467-481. https://doi.org/10.1387/ijdb.130199bl
  21. Lacroix, B., Loyter A., and Citovsky, V. (2008). Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc. Natl. Acad. Sci. USA 105, 15429-15434. https://doi.org/10.1073/pnas.0805641105
  22. Lee, C.W., Efetova, M., Engelmann, J.C., Kramell, R., Wasternack, C., Ludwig-Muller, J., Hedrich, R., and Deeken, R. (2009). Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948-2962. https://doi.org/10.1105/tpc.108.064576
  23. Liu, C., Li, X., and Gelvin, S.B. (1992). Multiple copies of virG enhance the transient transformation of celery, carrot, and rice tissues by Agrobacterium tumefaciens. Plant. Mol. Biol. 20, 1071-1087. https://doi.org/10.1007/BF00028894
  24. Melo, J.O., Lana, U.G.P., Pineros, M.A., Alves, V.M.C., Guimaraes, C.T., Liu, J., Zheng, Y., Zhong, S., Fei, Z., Maron, L.G., et al. (2013). Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum. Plant J. 73, 276-288. https://doi.org/10.1111/tpj.12029
  25. Mysore, K.S., Nam, J., and Gelvin, S.B. (2000a). An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA 97, 948-953. https://doi.org/10.1073/pnas.97.2.948
  26. Mysore, K.S., Ranjith-Kumar, C., and Gelvin, S.B. (2000b). Arabidopsis ecotype and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J. 21, 9-16. https://doi.org/10.1046/j.1365-313x.2000.00646.x
  27. Nam, J., Matthysse, A., and Gelvin, S.B. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9, 317-333. https://doi.org/10.1105/tpc.9.3.317
  28. Nam, J., Mysore, K.S., Zheng, C., Knue, M., Matthysse, A., and Gelvin, S.B. (1999). Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Gent. 261, 429-438. https://doi.org/10.1007/s004380050985
  29. Narasimhulu, S., Deng, X., Sarria, R., and Depicker, A. (1996). Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant Cell 8, 873-886. https://doi.org/10.1105/tpc.8.5.873
  30. Pan, X., Chen, Z., Yang, X., and Liu, G. (2014). Arabidopsis Voltage-Dependent Anion Channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS ONE 9:e106941. doi:10.1371/journal.pone.0106941.
  31. Rho, H., Kang, S., and Lee, Y. (2001). Agrobacterium tumefaciensmediated transformation of plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12, 407-411.
  32. Sampson, M., Lovell, R., and Craigen, W. (1997). The murine voltage-dependent anion channel gene family. J. Biol. Chem. 272, 18966-18973. https://doi.org/10.1074/jbc.272.30.18966
  33. Sangwan, R., Bourgeois, Y., and Sangwan-Norreel, B. (1991). Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol. Gen. Genet. 230, 475-485. https://doi.org/10.1007/BF00280305
  34. Sangwan, R., Bourgeois, Y., Brown, S., Vasseur, G., and Sangwan-Norreel, B. (1992). Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188, 439-456.
  35. Shi, Y., Lee, L.Y., and Gelvin, S.B. (2014). Is VIP1 important for Agrobacterium-mediated transformation? Plant J. 79, 848-860. https://doi.org/10.1111/tpj.12596
  36. Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., and Arbel, N. (2010). VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 31, 227-285. https://doi.org/10.1016/j.mam.2010.03.002
  37. Shou, H., Frame, B.R., Whitham, S.A., and Wang, K. (2004). Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. 13, 201-208. https://doi.org/10.1023/B:MOLB.0000018767.64586.53
  38. Tateda, C., Watanabe, K., Kusano, T., and Takahashi, Y. (2011). Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J. Exp. Bot. 62, 4773-4785. https://doi.org/10.1093/jxb/err113
  39. Tsujimoto, Y., and Shimizu, S. (2002). The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187-193. https://doi.org/10.1016/S0300-9084(02)01370-6
  40. Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20, 3596-3607. https://doi.org/10.1093/emboj/20.13.3596
  41. Tzfira, T., Vaidya, M., and Citovsky, V. (2002). Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc. Natl. Acad. Sci. USA 99, 10435-10440. https://doi.org/10.1073/pnas.162304099
  42. Zaltsman, A., Krinchevsky, A., Loyter, A., and Citovskya, V. (2010). Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell Host Microbe 7, 197-209. https://doi.org/10.1016/j.chom.2010.02.009
  43. Zaltsman, A., Lacroixa, B., Gafnib, Y., and Citovskya, V. (2013). Disassembly of synthetic Agrobacterium T-DNA-protein complexes via the host SCFVBF ubiquitin-ligase complex pathway. Proc. Natl. Acad. Sci. USA 110, 169-174. https://doi.org/10.1073/pnas.1210921110
  44. Zhu, Y., Nam, J., Humara, J., Mysore, K., Lee, L.Y., Cao, H., Valentine, L., Li, J., Kaiser, A., Kopecky, A., et al. (2003). Identification of Arabidopsis rat mutants. Plant Physiol. 132, 285-298.

Cited by

  1. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology vol.2020, pp.None, 2016, https://doi.org/10.34133/2020/8189219
  2. Gametophytic Abortion in Heterozygotes but Not in Homozygotes: Implied Chromosome Rearrangement during T-DNA Insertion at the ASF1 Locus in Arabidopsis vol.43, pp.5, 2016, https://doi.org/10.14348/molcells.2020.2290
  3. VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111603
  4. Characterization of the voltage-dependent anion channel (VDAC) gene family in wheat (Triticum aestivum L.) and its potential mechanism in response to drought and salinity stresses vol.809, pp.None, 2016, https://doi.org/10.1016/j.gene.2021.146031