• Title/Summary/Keyword: virulence diversity

Search Result 33, Processing Time 0.023 seconds

Characterization of the Serotyping and the Plasmid Profile of E. coli Isolated from Foods and Clinical Specimens

  • Hyo-Shun Kwak;Chong-Sam Lee
    • Animal cells and systems
    • /
    • v.3 no.4
    • /
    • pp.399-405
    • /
    • 1999
  • Characteristics of the food isolates and the clinical specimens isolates of E. coli harboring virulence factor and their correlations were analyzed. The predominant serogroup were 08 and 027 in the food isolates and 06 and 018 in the clinical isolates, respectively, showing the different patterns in serogrouping between them. In the test of antibiotic susceptibility, the food isolates were resistant to cephalothin, streptomycin, tetracycline and minocycline, and the clinical isolates were resistant to ampicillin, carbenicillin, streptomycin, cephalothin, trimethoprim/sulfamethoxazole, tetracyclino and minocycline, respectively. It shows that E.coli isolated from food sources and clinical specimens might be correlated. Plasmid profile in the food and clinical isolates showed wide diversity. Especially, large sized plasmid DNA such as 60 MDa, 90 MDa and 120 MDa were observed. The plasmid DNA (60 MDa) containing a gene encoding hemolysin was found in 43% of the food isolates and 35% of the clinical isolates. To study chromosomal homology, PFGE analysis was performed, showing different restriction patterns by Xbal. This result indicates that there were no genetic correlations between the foods and the clinical isolates.

  • PDF

Draft Genome Sequence of Aeromonas caviae Isolated from a Newborn with Acute Haemorrhagic Gastroenteritis

  • Savita Jadhav;Ujjayni Saha;Kunal Dixit;Anjali Kher;Sourav Sen;Nitin Lingayat;Vivekanand Jadhav;Sunil Saroj
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.217-221
    • /
    • 2023
  • Aeromonas spp., are Gram-negative rods that can cause infections in healthy and immunocompromised hosts. The clinical presentation of gastroenteritis varies from mild diarrhoea to shigella-like dysentery to severe cholera-like watery diarrhoea. Here, we report a case of acute hemorrhagic gastroenteritis in a newborn infant by Aeromonas caviae and its draft genome sequence. It is important to reduce the chance of incorrect isolate identification, which could lead to the exclusion of pathogenic Aeromonas spp., from routine laboratory identification in cases of diarrheal diseases. The genome sequence of A. caviae SVJ23 represents a significant step forward in understanding the diversity and pathogenesis, virulence, and antimicrobial resistance profile.

Genetic Relationship between SCCmec Types and Virulence Factors of Methicillin-Resistant Staphylococcus aureus Clinical Isolates in Korea

  • Lim, Kwan-Hun;Lee, Gyu-Sang;Park, Min;Lee, Jin-Hee;Suh, In-Bum;Ryu, Sook-Won;Eom, Yong-Bin;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • The molecular epidemiological characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolates have demonstrated their genetic diversity and evolution. A total of 137 strains of MRSA clinical isolates was collected from Korean healthcare facility in 2007. The MRSA clinical isolates were analyzed by molecular typings (SCCmec element and agr locus typing), virule nce factor gene detections {(Panton-Valentine leukocidin (PVL), enterotoxin, exfoliative toxin and toxic shock syndrome toxin-1), and amplified fragment length polymorphism (AFLP)}. The MRSA clinical isolates were classified as SCCmec type II-agr type 1 (2 strains), type II-agr type 2 (79 strains), type III-agr type 1 (24 strains), type III-agr type 2 (2 strains), type IV-agr type 1 (27 strains), type IV-agr type 2 (2 strains), and non-typable (1 strain, agr type 3). Based on SCCmec types, SCCmec type II (95.1%) and III (88.5%) indicated higher multidrug resistance rate than SCCmec type IV (10.3%) (P<0.001). The most common enterotoxin genes were seg (83.8%), sei (83.1%), and sec (80.2%). The tst gene was present in 86 out of 137 (62.8%) MRSA isolates. All MRSA isolates were negative for PVL and exfoliative toxin genes. The combinations of toxin genes were observed in particular SCCmec types; 97.6% of SCCmec type II strains carried sec, seg, sei and tst genes, 73.0% of SCCmec type III strains carried sea gene, and 89.7% of SCCmec type IV strains carried sec, seg and sei genes. Each of the SCCmec types of MRSA isolates had distinct AFLP profile. In conclusion, SCCmec type II, agr type 1 and 2 have demonstrated to be the most common types in Korea, and the results indicated that the virulence factors are closely associated with their molecular types (SCCmec and agr types).

Rice Blast Control and Race Diversity by Mixed-Planting of Two Cultivars ('Hopyeongbyeo'/'Nampyeongbyeo') with Different Susceptibility to Magnaporthe oryzae (호평벼와 남평벼의 혼합재배에 의한 도열병 방제와 레이스 다양성의 변화)

  • Oh, In-Seok;Min, Ji-Young;Cho, Myung-Gil;Roh, Jae-Hwan;Shin, Dong-Bum;Song, Jin;Kim, Myeong-Ki;Cho, Young-Chan;Kim, Byung-Ryun;Han, Seong-Sook
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.143-152
    • /
    • 2008
  • Mixed-planting of two rice cultivars, HP ('Hopyeongbyeo') and NP ('Nampyeongbyeo'), having a dissimilar susceptibility to rice blast was practiced for chemical-free control of rice blast in the field. The HP/NP combination was selected for applying under mechanized agricultural conditions. Because they have similar genetic characteristics such as seed germination and heading time, culm length, rice quality and size of rice grains except susceptibility to blast. Incidence of panicle blast was reduced 50.4 % compare with supposed blast incidence by HP/NP mixed-planting when the seeds of two cultivars were combined 1 to 1 as weight. Supposed blast incidence was estimated from reduction of rice blast caused by addition of a resistant cultivar NP. Race diversity of Magnaporthe oryzae was examined for correlation with control effect of HP/NP mixed-planting on rice blast. The population of dominant race KJ-101 was diminished and replaced with various co-existing races and eleven new races were appeared in mixed-planting plot. Total number of race isolated from mixed-planting plot was not largely different from mono-culture. However, detection frequency of the new race was increased and variation of the population size of each race was decreased in mixed-planting plots. It was shown that a biased community with a dominant race (KJ-101 or KI-181) was altered to a balanced one of coexisting races. From these results, it was supposed that the balanced diversity among co-existing races within a community might be correlated to control effect by HP/NP mixed-planting on rice blast. Further more, it should be studied that genetic characteristics of the individual race including a virulence on cv. HP and NP was examined for verifying a correlation of mixed-planting effect and race diversity.

Whole-Body Microbiota of Sea Cucumber (Apostichopus japonicus) from South Korea for Improved Seafood Management

  • Kim, Tae-Yoon;Lee, Jin-Jae;Kim, Bong-Soo;Choi, Sang Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1753-1762
    • /
    • 2017
  • Sea cucumber (Apostichopus japonicus) is a popular seafood source in Asia, including South Korea, and its consumption has recently increased with recognition of its medicinal properties. However, because raw sea cucumber contains various microbes, its ingestion can cause foodborne illness. Therefore, analysis of the microbiota in the whole body of sea cucumber can extend our understanding of foodborne illness caused by microorganisms and help to better manage products. We collected 40 sea cucumbers from four different sites in August and November, which are known as the maximum production areas in Korea. The microbiota was analyzed by an Illumina MiSeq system, and bacterial amounts were quantified by real-time PCR. The diversity and bacterial amounts in sea cucumber were higher in August than in November. Alpha-, Beta-, and Gammaproteobacteria were common dominant classes in all samples. However, the microbiota composition differed according to sampling time and site. Staphylococcus warneri and Propionibacterium acnes were commonly detected potential pathogens in August and November samples, respectively. The effect of experimental Vibrio parahaemolyticus infection on the indigenous microbiota of sea cucumber was analyzed at different temperatures, revealing clear alterations of Psychrobacter and Moraxella; thus, these shifts can be used as indicators for monitoring infection of sea cucumber. Although further studies are needed to clarify and understand the virulence and mechanisms of the identified pathogens of sea cucumber, our study provides a valuable reference for determining the potential of foodborne illness caused by sea cucumber ingestion and to develop monitoring strategies of products using microbiota information.

Genetic Diversity of Didymella bryoniae for RAPD Profiles Substantiated by SCAR Marker in Korea

  • Shim, Chang-Ki;Seo, Il-Kyo;Jee, Hyeong-Jin;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 2006
  • Twenty isolates of Didymella bryoniae were isolated from infected cucurbit plants in various growing areas of southern Korea in 2001 and 2002. Random Amplified Polymorphic DNA (RAPD) group [RG] I of D. bryoniae was more virulent than RG IV to watermelon. Virulence of the RG I isolate was strong to moderate to cucumber, whereas that of the RG IV varied from strong, moderate to weak. Two hundred seventy-three amplified fragments were produced with 40 primers, and were analyzed by a cluster analysis using UPGMA method with an arithmetic average program of NTSYSPC. At the distance level of 0.7, two major genomic DNA RAPD groups were differentiated among 20 isolates. The RG I included 7 isolates from watermelon and one isolate from melon, whereas the RG IV included 12 isolates from squash, cucumber, watermelon and melon. Amplification of internal transcribed spacer (ITS) region and small subunit rRNA region from the 20 isolates yielded respectively a single fragment. Restriction pattern with 12 restriction enzymes was identical for all isolates tested, suggesting that variation in the ITS and small subunit within the D. bryoniae were low. Amplification of the genomic DNAs of the tested isolates with the sequence characterized amplified regions (SCAR) primer RG IF-RG IR specific for RG I group resulted in a single band of 650bp fragment for 8 isolates out of the 20 isolates. Therefore, these 8 isolates could be assigned into RG I. The same experiments done with RG IIF-RG IIR resulted in no amplified PCR product for the 20 isolates tested. An about 1.4 kb-fragment amplified from the RG IV isolates was specifically hybridized with PCR fragments amplified from genomic DNAs of the RG IV isolates only, suggesting that this PCR product could be used for discriminating the RG IV isolates from the RG I isolates as well other fungal species.

Physiological Diversity between Morphological Phenotypes of Botrytis cinerea (잿빛곰팡이병균(Botrytis cinerea) 형태형 간의 생리적 다양성)

  • Kim, Byung-Sup;Park, Eun-Woo;Roh, Seong-Hwan;Cho, Kwang-Yun
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.320-329
    • /
    • 1997
  • Botrytis cinerea isolates obtained from infected plants of cucumber, tomato, and strawberry were divided into three groups (sporing, sclerotial, and mycelial types). Of which sclerotial types were the major group. There were no correlations between morphological phenotypes and responses to benzimidazole and dicarboximide fungicides. External structure of conidia of three phenotypes by scanning electron microscope was the same with verrucose surface. Mycelial type was the most virulent on fruits of eggplants. Comparative tests were carried out to examine correlations between the virulence and production of fungal enzymes such as phenol oxidases, pectin methyl esterases (PME), amylases, cellulases, ureases, ${\beta}-glucosidases$, and proteinases. There was no correlation among the phenotypes in production of phenol oxidases and ${\beta}-glucosidases$. However, there were significantly different from each other in PME, amylase, cellulase, urease, and protease activity.

  • PDF

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal;Asad Ullah;Waheed Anwar;Carlos M. Morel;Syed Shah Hassan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.34.1-34.10
    • /
    • 2023
  • Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

Identification of New Isolates of Phytophthora sojae and Selection of Resistant Soybean Genotypes

  • Su Vin Heo;Hye Rang Park;Yun Woo Jang;Jihee Park;Beom Kyu Kang;Jeong Hyun Seo;Jun Hoi Kim;Ji Yoon Lee;Man Soo Choi;Jee Yeon Ko;Choon Song Kim;Sungwoo Lee;Tae-Hwan Jun
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.329-335
    • /
    • 2024
  • Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, can occur at any growth stage under poorly drained and humid conditions. The expansion of soybean cultivation in South Korean paddy fields has increased the frequency of PRR outbreaks. This study aimed to identify four P. sojae isolates newly collected from domestic fields and evaluate race-specific resistance using the hypocotyl inoculation technique. The four isolates exhibited various pathotypes, with GJ3053 exhibiting the highest virulence complexity. Two isolates, GJ3053 and AD3617, were screened from 205 soybeans, and 182 and 190 genotypes (88.8 and 92.7%, respectively) were susceptible to each isolate. Among these accessions, five genotypes resistant to both isolates were selected. These promising genotypes are candidates for the development of resistant soybean cultivars that can effectively control PRR through gene stacking.