DOI QR코드

DOI QR Code

Whole genome sequence of Staphylococcus aureus strain RMI-014804 isolated from pulmonary patient sputum via next-generation sequencing technology

  • Ayesha, Wisal (Department of Chemistry, Islamia College Peshawar) ;
  • Asad Ullah (Department of Chemistry, Islamia College Peshawar) ;
  • Waheed Anwar (Department of Pulmonology, Rehman Medical Institute) ;
  • Carlos M. Morel (Centre for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz)) ;
  • Syed Shah Hassan (Department of Chemistry, Islamia College Peshawar)
  • Received : 2023.03.30
  • Accepted : 2023.06.27
  • Published : 2023.09.30

Abstract

Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

Keywords

References

  1. Hui E, Vale RD. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat Struct Mol Biol 2014; 21:133-142. https://doi.org/10.1038/nsmb.2762
  2. Samaras F, Konstantinidou P, Chatzifotiou E, Tsavlis D, Georgiadis M, Anestakis D. A rare case of eosinophilic pneumonia in an infant patient and review of the current English literature regarding this disease. Aristotle Biomed J 2020;2:14-37.
  3. Ravi Kumar S, Paudel S, Ghimire L, Bergeron S, Cai S, Zemans RL, et al. Emerging roles of inflammasomes in acute pneumonia. Am J Respir Crit Care Med 2018;197:160-171. https://doi.org/10.1164/rccm.201707-1391PP
  4. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet 2011;377:1264-1275. https://doi.org/10.1016/S0140-6736(10)61459-6
  5. Heron M. Deaths: leading causes for 2017. Natl Vital Stat Rep 2019;68:1-77.
  6. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/ American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44 Suppl 2:S27-S72. https://doi.org/10.1086/511159
  7. Lanks CW, Musani AI, Hsia DW. Community-acquired pneumonia and hospital-acquired pneumonia. Med Clin North Am 2019;103:487-501. https://doi.org/10.1016/j.mcna.2018.12.008
  8. Dunn L. Pneumonia: classification, diagnosis and nursing management. Nurs Stand 2005;19:50-54. https://doi.org/10.7748/ns2005.06.19.42.50.c3901
  9. Pantosti A. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front Microbiol 2012;3:127.
  10. Fitzgerald JR, Holden MT. Genomics of natural populations of Staphylococcus aureus. Annu Rev Microbiol 2016;70:459-478. https://doi.org/10.1146/annurev-micro-102215-095547
  11. Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998;339:520-532. https://doi.org/10.1056/NEJM199808203390806
  12. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl 2013;(136):1-51.
  13. Gnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. In: Frontiers in Staphylococcus aureus (Enany S, Alexander LE, eds.). London: InTech, 2017.
  14. Ogston A. Report upon micro-organisms in surgical diseases. Br Med J 1881;1:369.b2-375. https://doi.org/10.1136/bmj.1.1054.369
  15. Hall JW, Ji Y. Sensing and adapting to anaerobic conditions by Staphylococcus aureus. Adv Appl Microbiol 2013;84:1-25. https://doi.org/10.1016/B978-0-12-407673-0.00001-1
  16. Missiakas DM, Schneewind O. Growth and laboratory maintenance of Staphylococcus aureus. Curr Protoc Microbiol 2013; Chapter 9:Unit 9C.1.
  17. Valero A, Perez-Rodriguez F, Carrasco E, Fuentes-Alventosa JM, Garcia-Gimeno RM, Zurera G. Modelling the growth boundaries of Staphylococcus aureus: effect of temperature, pH and water activity. Int J Food Microbiol 2009;133:186-194. https://doi.org/10.1016/j.ijfoodmicro.2009.05.023
  18. Aryal S. Staphylococcus aureus: an overview. Kathmandu: Microbe Note, 2020. Accessed 2023 Aug 10. Available from: https://microbenotes.com/staphylococcus-aureus/.
  19. Jaber NN. Isolation and biotyping of Staphylococcus aureus from white cheese in Basrah local markets. Basrah J Vet Res 2011;10:55-66. https://doi.org/10.33762/bvetr.2011.55025
  20. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury 2006;37 Suppl 2:S3-S14. https://doi.org/10.1016/j.injury.2006.04.003
  21. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010;2:a000414.
  22. Foster TJ, McDevitt D. Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol Lett 1994;118:199-205. https://doi.org/10.1111/j.1574-6968.1994.tb06828.x
  23. Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 1994;48:585-617. https://doi.org/10.1146/annurev.mi.48.100194.003101
  24. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother 2005;56:1000-1018. https://doi.org/10.1093/jac/dki372
  25. Holt JG, Krieg NR, Sneath PH, Stanley JT, William ST. Bergey's Manual of Determinate Bacteriology. 9th ed. Baltimore: Williams and Wilkins, 1994.
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455-477. https://doi.org/10.1089/cmb.2012.0021
  27. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004;32:11-16. https://doi.org/10.1093/nar/gkh152
  28. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100-3108. https://doi.org/10.1093/nar/gkm160
  29. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119.
  30. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421.
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.
  32. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005;33:D325-D328. https://doi.org/10.1093/nar/gki008
  33. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020;75:3491-3500. https://doi.org/10.1093/jac/dkaa345
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068-2069. https://doi.org/10.1093/bioinformatics/btu153
  35. Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008;36:W181-W184. https://doi.org/10.1093/nar/gkn179
  36. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-1549. https://doi.org/10.1093/molbev/msy096
  37. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2015;43:D6-D17. https://doi.org/10.1093/nar/gku1130
  38. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008;26:541-547. https://doi.org/10.1038/nbt1360
  39. Taylor TA, Unakal CG. Staphylococcus aureus infection. Treasure Island: StatPearls Publishing, 2017.
  40. Hashmi I, Bindschedler S, Junier P. Firmicutes. In: Beneficial Microbes in Agro-Ecology (Amaresan N, Senthil Kumar M, Annapurna K, Kumar K, Sankaranarayanan A, eds.). Amsterdam: Academic Press, 2020. pp. 363-396.
  41. Gulzar M, Zehra A. Staphylococcus aureus: a brief review. Int J Vet Sci Res 2018;4:20-22.
  42. Seo KS, Bohach GA. Staphylococcus aureus. In: Food Microbiology: Fundamentals and Frontiers (Doyle MP, Buchanan RL, eds.). American Society for Microbiology, Washington, DC: pp. 547-573.
  43. Pal M, Patil PB. Isolation of Staphylococcus aureus from wound of a Hanuman Langur. Zoo's Print J 2006;21:2173.
  44. Halpin-Dohnalek MI, Marth EH. Staphylococcus aureus: production of extracellular compounds and behavior in foods - a review. J Food Prot 1989;52:267-282. https://doi.org/10.4315/0362-028X-52.4.267
  45. Sutherland JP, Bayliss AJ, Roberts TA. Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride. Int J Food Microbiol 1994;21:217-236. https://doi.org/10.1016/0168-1605(94)90029-9
  46. Seidl K, Muller S, Francois P, Kriebitzsch C, Schrenzel J, Engelmann S, et al. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol 2009;9:95.
  47. Halsey CR, Lei S, Wax JK, Lehman MK, Nuxoll AS, Steinke L, et al. Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression. mBio 2017;8:e01434-16.
  48. Foster TJ. Staphylococcus aureus. In: Molecular Medical Microbiology (Sussman M, ed.). London: Academic Press, 2002. pp. 839-888.
  49. Yarlagadda V, Samaddar S, Haldar J. Intracellular activity of a membrane-active glycopeptide antibiotic against meticillin-resistant Staphylococcus aureus infection. J Glob Antimicrob Resist 2016;5:71-74. https://doi.org/10.1016/j.jgar.2015.12.007
  50. Bongers S, Hellebrekers P, Leenen LP, Koenderman L, Hietbrink F. Intracellular penetration and effects of antibiotics on Staphylococcus aureus inside human neutrophils: a comprehensive review. Antibiotics (Basel) 2019;8:54.
  51. Medvedova A, Valik L, Sirotna Z, Liptakova D. Growth characterisation of Staphylococcus aureus in milk: a quantitative approach. Czech J Food Sci 2009;27:433-453. https://doi.org/10.17221/24/2009-CJFS
  52. Bayles KW, Wesson CA, Liou LE, Fox LK, Bohach GA, Trumble WR. Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 1998; 66:336-342. https://doi.org/10.1128/IAI.66.1.336-342.1998
  53. Zhan XY, Zhu QY. Evolution of methicillin-resistant Staphylococcus aureus: evidence of positive selection in a penicillin-binding protein (PBP) 2a coding gene mecA. Infect Genet Evol 2018;59: 16-22. https://doi.org/10.1016/j.meegid.2018.01.018
  54. Karp PD, Midford PE, Billington R, Kothari A, Krummenacker M, Latendresse M, et al. Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology. Brief Bioinform 2021;22:109-126.
  55. Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 2019;20:1085-1093. https://doi.org/10.1093/bib/bbx085
  56. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009;7:629-641. https://doi.org/10.1038/nrmicro2200
  57. Schmitz FJ, Jones ME, Hofmann B, Hansen B, Scheuring S, Luckefahr M, et al. Characterization of grlA, grlB, gyrA, and gyrB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Antimicrob Agents Chemother 1998;42:1249-1252. https://doi.org/10.1128/AAC.42.5.1249
  58. Li X, Lei M, Song Y, Gong K, Li L, Liang H, et al. Whole genome sequence and comparative genomic analysis of multidrug-resistant Staphylococcus capitis subsp. urealyticus strain LNZR-1. Gut Pathog 2014;6:45.