• Title/Summary/Keyword: virtual simulation

Search Result 2,147, Processing Time 0.024 seconds

A systematic review and meta-analysis of studies on extended reality-based pediatric nursing simulation program development

  • Kim, Eun Joo;Lim, Ji Young;Kim, Geun Myun
    • Child Health Nursing Research
    • /
    • v.29 no.1
    • /
    • pp.24-36
    • /
    • 2023
  • Purpose: This systematic literature review and meta-analysis explored extended reality (XR)-based pediatric nursing simulation programs and analyzed their effectiveness. Methods: A literature search was conducted between May 1 and 30, 2022 in the following electronic databases: MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and CINAHL. The search period was from 2000 to 2022. In total, 6,095 articles were reviewed according to the inclusion and exclusion criteria, and 14 articles were selected for the final content analysis and 10 for the meta-analysis. Data analysis was performed using descriptive statistics and the Comprehensive Meta-Analysis program. Results: XR-based pediatric nursing simulation programs have increased since 2019. Studies using virtual reality with manikins or high-fidelity simulators were the most common, with six studies. The total effect size was statistically significant at 0.84 (95% confidence interval=0.50-1.19, z=4.82, p<.001). Conclusion: Based on the findings, we suggest developing standardized guidelines for the operation of virtual pediatric nursing simulation education and practice. Simultaneously, the application of more sophisticated research designs for effect measurement and the combined applications of various virtual simulation methods are needed to validate the most effective simulation methodology.

3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing

  • Zhong Yongmin;Yuan Xiaobu
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2004
  • This paper presents a new approach to create 3D visualization from discrete simulation results. This approach connects discrete event simulation directly to 3D animation with its novel methods that analyze and convert discrete simulation results into animation events to trigger 3D animation. In addition, it constructs a 3D animation framework for the visualization of discrete simulation results. This framework supports the reuse of both the existing 3D animation objects and behavior components, and allows the rapid development of new 3D animation objects by users with no special knowledge in computer graphics. This approach has been implemented with the software component technology. As an application in virtual manufacturing, visualizations of an electronics assembly factory are also provided in the paper to demonstrate the performance of this new approach.

Virtual Simulation for Assembly and Maintenance Tasks (조립 및 정비에 대한 가상 모의 기술)

  • Park, Young-Keun;Ju, Hyun-Jun;Kim, Cheon-Young;Jung, Na-Hyeon;Lee, Jun-Kyu;Lee, In-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • This paper describes the development and applications of maintainability simulation system based on virtual reality technology. The immersive type maintainability simulator using virtual reality is developed and assembly simulation using DELMIA software is conducted for an air-to-ground munition as an example. The simulation processes and result validate the feasibility and effectiveness of maintainability simulation system for logistic element development.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.

Analysis of the virtual simulation practice and high fidelity simulation practice training experience of nursing students: A mixed-methods study (간호대학생의 Virtual 시뮬레이션 실습 및 High fidelity 시뮬레이션 실습교육 경험 분석: 혼합연구방법 적용)

  • Lee, Eun Hye;Ryu, So Young
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.27 no.3
    • /
    • pp.227-239
    • /
    • 2021
  • Purpose: This study used an exploratory sequential approach (mixed methods) design to explore essential meaning through comparing and analyzing the experiences of nursing students in virtual simulation practice and high fidelity simulation practice education in parallel. Methods: The study participants were 20 nursing students, and data were collected through focus group meetings from July 17 to August 5, 2020, and via online quantitative data from November 10 to November 15, 2020. The qualitative data were analyzed using Giorgi's phenomenological method, and the quantitative data were analyzed using descriptive statistics, the Mann-Whitney U test, Kruskal-Wallis H test analysis of variance and Spearman's ρ correlation. Results: The comparison between the two simulation training experiences was shown in five contextual structures, as follows: (1) reflection of the clinical field, (2) thinking theorem vs. thinking expansion, (3) individual-centered learning vs. team-centered learning, (4) attitudes toward participating in practical training, (5) metacognition of personal competency as a prospective nurse, and (6) revisiting the method of practice training. There was a positive correlation between satisfaction with the practice and the clinical judgment ability of high fidelity simulation, which was statistically significant (r=.47, p=.036). Conclusion: Comparing the experiences between virtual simulation practice training and high fidelity simulation practice training, which has increased in demand due to the Coronavirus Disease-2019 pandemic, is meaningful as it provides practical data for introspection and reflection on in-campus clinical education.

Web-based 3D Virtual Experience using Unity and Leap Motion (Unity와 Leap Motion을 이용한 웹 기반 3D 가상품평)

  • Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • In order to realize the virtual prototyping (VP) of digital products, it is important to provide the people involved in product development with the appropriate visualization and interaction of the products, and the vivid simulation of user interface (UI) behaviors in an interactive 3D virtual environment. In this paper, we propose an approach to web-based 3D virtual experience using Unity and Leap Motion. We adopt Unity as an implementation platform which easily and rapidly implements the visualization of the products and the design and simulation of their UI behaviors, and allows remote users to get an easy access to the virtual environment. Additionally, we combine Leap Motion with Unity to embody natural and immersive interaction using the user's hand gesture. Based on the proposed approach, we have developed a testbed system for web-based 3D virtual experience and applied it for the design evaluation of various digital products. Button selection test was done to investigate the quality of the interaction using Leap Motion, and a preliminary user study was also performed to show the usefulness of the proposed approach.

Development of Virtual Construction Equipment Simulation System Based on BIM for Civil Engineering Project (토목시설물에 대한 BIM 기반 가상건설 장비 시뮬레이션 시스템 개발)

  • Kim, Sung-Hoon;Yoon, Young-Cheol;Joo, Cheol-Beom;Yoon, Dong-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • BIM(building information modeling) has been actively applied to construction industries and to maximize its application through the life cycle of structure, various relevant technologies have been proposed. In particular, 4D sequencing management and 5D cost-related management were introduced as an improved version of the design review and interface control by 3D information design. On the other hand, the virtual construction using virtual construction equipment can sophisticatedly handle capacity, dynamic movement, collision boundaries of actual construction machines but it still stays at a low level in a technical sense. In this study, simulation systems based on BIM involving virtual construction equipment have been developed; then it is applied to the actual construction project to evaluate the safety and efficiency of construction equipments. It was confirmed that the simulation systems can be utilized to construct virtual construction site by using an effective 3D library of construction equipment and can plays a key role to secure construction safety and economic feasibility. Specifically, the simulation system are very useful for decision making by construction managers to select the optimum equipment and construction method with a better understanding for safety and cost-saving.

Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application

  • Seong, Hyunyoung;Yun, Daehun;Yoon, Kyung Seob;Kwak, Ji Soo;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.403-412
    • /
    • 2022
  • Background: Most pain management techniques for challenging procedures are still performed under the guidance of the C-arm fluoroscope although it is sometimes difficult for even experienced clinicians to understand the modified three-dimensional anatomy as a two-dimensional X-ray image. To overcome these difficulties, the development of a virtual simulator may be helpful. Therefore, in this study, the authors developed a virtual simulator and presented its clinical application cases. Methods: We developed a computer program to simulate the actual environment of the procedure. Computed tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data were used for the simulations. Virtual needle placement was simulated at the most appropriate position for a successful block. Using a virtual C-arm, the authors searched for the position of the C-arm at which the needle was visualized as a point. The positional relationships between the anatomy of the patient and the needle were identified. Results: For the simulations, the CT DICOM data of patients who visited the outpatient clinic was used. When the patients revisited the clinic, images similar to the simulated images were obtained by manipulating the C-arm. Transforaminal epidural injection, which was difficult to perform due to severe spinal deformity, and the challenging procedures of the superior hypogastric plexus block and Gasserian ganglion block, were successfully performed with the help of the simulation. Conclusions: We created a pre-procedural virtual simulation and demonstrated its successful application in patients who are expected to undergo challenging procedures.

The Effect of Education Integrating Virtual Reality Simulation Training and Outside School Clinical Practice for Nursing Students (간호대학생의 가상 현실 시뮬레이션 교육과 교외 임상실습을 통합한 교육의 효과)

  • Lim, Semi;Yeom, Young-Ran
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.100-108
    • /
    • 2020
  • The purpose of this study is to identify the differences in self-efficacy, clinical performance ability, and critical thinking disposition after applying education integrated educational virtual reality simulation to training and outside school clinical practice to nursing college students and to provide them as basic data for effective practical education. This study was conducted from June 8 to July 3, 2020, and enrolled in the 3rd year of university in G city, and 30 subjects who did not receive virtual reality simulation training or outside school clinical training at all. Data were analyzed by Paired t-test. As a result of the study, the result of pretest and posttest to each group showed statistically significant improvements in self-efficacy, clinical performance ability, and critical thinking disposition. As a results of the study, education integrating virtual reality simulation training and clinical practice for nursing students to improves clinical performance ability, improves critical thinking, and self-efficacy, so it is thought that various virtual reality simulation training must be suitable for clinical situations before practice is necessary.

The Effect of Virtual Reality Simulation Education on Nursing Process Competency (가상현실 시뮬레이션 교육이 간호과정 수행능력에 미치는 효과)

  • Lim, Jung-Hye
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.401-409
    • /
    • 2021
  • This study was performed to identify the difference in nursing process competency, critical thinking disposition and self-efficacy after applying virtual reality simulation education. The data were collected from 31 nursing college students using URL from February to April 2021 and analyzed SPSS 22.0. The pretest and posttest result of each group showed statistically significant improvements in nursing process competency(t=-3.776, p=.001), critical thinking disposition(t=-3.608, p=.001) and self-efficacy(t=-3.580, p=.001). As a result of this study, it was found that virtual reality simulation education improve nursing process competency, critical thinking disposition and self-efficacy of nursing students. Therefore, virtual reality simulation education will be the basis for preparing effective clinical practice education strategies for nursing students. It is suggested to have follow-up studies on virtual reality simulation education and various scenarios should be developed.