
International Journal ofCAD/CAM Vol. 4, No. 1, pp. 19-32 (2004) International
Journal of
CAD/CAM

www.ijcc.org

3D Visualization of Discrete Event Simulation and Its Applications in Virtual
Manufacturing

Ybngmin Zhon응* and Xiaobu Yuan1

*Corresponding author:
Tel: +61-(0)3-9905-1518
Fax: +61-(0)3-9905-1825
E-mail: Ybngmin.Zhong@eng.monash.edu.au

Department of Mechanical Engineering, Monash University, Australia
!School of Computer Science, University of Windsor; Canada

Abstract 一 This paper presents a new approach to create 3D visualization from discrete simulation results. This approach
connects discrete event simulation directly to 3D animation with its novel methods that analyze and convert discrete simulation
results into animation events to trigger 3D animation. In addition, it constructs a 3D animation framework for the visualization
of discrete simulation results. This framework supports the reuse of both the existing 3D animation objects and behavior
components, and allows the rapid development of new 3D animation objects by users with no special knowledge in computer
graphics. This approach has been implemented with the software component technology. As an application in virtual
manufacturing, visu지izations of an electronics assembly factory are also provided in the paper to demonstrate the performance
of this new approach.

Keywords^ Discrete event simulation, Discrete simulation events, Visualization, 3D animation, Software components and
virtual manufacturing

1. Introduction

Three-dimensional (3D) visualization of simulation
results is an important and useful technique for
engineering simulation [26]. It allows users to examine
the complex processes of production plants in real-time
and from different aspects. 3D visualization represents
physical working environments with 3D graphics objects,
and presents abstract simulation models by means of
computer animation. It produces the visual presentation
of what is to happen in the real world, thus providing
users with a focility to study and analyze the production
and logistics behaviors of industrial manufacturing
operations. Through 3D visualization, users can obtain
information not only from reports and statistical results,
but also from the visual scenarios of the entire operational
cycle within production plants, including supply chains,
inventory, resource utilization, flow of materials, and
the overall operation.

Despite its importance, 3D visualization of simulation
results is still not widely accessible and its development
cost is very large. The visualization of a stream of
simulation results needs a connection between simulation
and animation to convert discrete simulation events into
animation-controlled events for direct stimulation of
animation behaviors, and to convert simulation parameters
and attributes into animation properties. Changes at one

end of the connection should be automatically and
immediately reflected at the other end. Furthermore, it
requires a special animation framework to visualize in
virtual environments the discrete events generated by
simulation systems. Such framework should allow users
with only average computer skills to easily and quickly
create new animation scenarios and new visualization
applications. Discrete simulation events provide only
abstract information about state changes without
providing details about how to perform an animation. It
is therefore necessary for the animation framework to
support both pure animation methods and the modeling
of object behaviors. The practical nature of industrial
applications also requires the animation framework to
be capable of reacting to all incoming events in real time.

This paper presents a new approach for 3D visualization
of discrete simulation results. This approach connects
discrete event simulations with 3D animations, and
supports rapid development of 3D animations from
simulation results. It develops the methods to analyze
discrete simulation results and to convert them into
animation events for 3D animation. In addition, a 3D
animation framework is constructed for the visualization
of discrete simulation results. In the remainder of this
paper, Section 2 gives a brief survey of the prior work
related to this research. The analyzing and converting
methods are then discussed in Section 3. After Section
4 outlines the animation framework, Section 5 presents
system implementation and application results. Finally,
Section 6 gives the conclusions and discusses future
work.

http://www.ijcc.org
mailto:Ybngmin.Zhong@eng.monash.edu.au

20 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19-32

2. Related Work

This brief survey first introduces the concept and
progress of discrete event simulation. The focus then
turns to the existing methods and practices in the
visualization of discrete event simulation. Afterwards,
current techniques for the rapid and cost-effective
development of visualization systems are also discussed.

2.1. Discrete event simulation
Simulation is an important tool to predict real world

phenomena through a computer model of a real
phenomenon or system. It provides a way for decision­
makers to evaluate different scenarios and identify the
manufacturing system design that best meets their
need. Most commercial software tools for engineering
simulation are discrete event simulators. They simulate
the behaviors of entities when an event occurs at a
distinct point of time [11, 15, 22]. Events refer to the
instants in time in which variable changes take place.
They are called discrete simulation events that include
all the state information of entities at an instant. The
occurrence of events drives the simulation and the
simulation clock. Nothing should happen between
events. Therefore, time in a discrete event system does
not proceed linearly b나t in irregular intervals [9]. An
overview of discrete event simulation can be found in [1].

Discrete event simulation has been successfully used
for the simulation and analysis of engineering applications
in the past several decades. One important application
is material flow simulation [16]. In this application,
discrete simulators are used in the planning of material
flow in a production system to anange for effective and
efficient production. Simulation is based on an abstract
model of the plant that generates production reports
and statistics. The process is time-consuming, and the
generated results often do not match the expectations of
experienced users or factory historical record. This
mismatch places the usability of simulation systems in
doubt, and causes hesitation in adopting them. In
addition, the 2D simulation model of a complex system
is only an abstract and simplification of the actual system
[17]. The abstract simulation model is usually simplified
to make it practical, but users may not be aware of the
changes as these changes usually do not appear in the
document of model specifications. Therefore, the
verification and validation of the simulation model are
still necessary. For example, Birta presented a knowledge­
based method to validate the behaviors of discrete
simulation models [2] and Gennart presented a concept
for the validation of discrete event simulations based on
recursively detecting and naming patterns of events [8].

Another problem of the event-oriented simulator is
that its output is very difficult to understand. The
interpretation of large amounts of digital information is
suited for experts only. Users of such systems normally
have neither the required knowledge nor the experience

to study and analyze the simulation results. There have
been continuous efforts to develop techniques for the
presentation of abstract simulation mod이s in visual
formats so that non-expert users can understand and
examine the underlying phenomena through visualization.
3D visualization is expected to enhance the users'
confidence in engineering simulation, and to avoid
potential errors caused by uncertainty and imprecision.

2.2. Msualization of discrete event simulation
For the visualization of discrete event simulation, a

virtual factory was created by Kelsick [14]. It allows
users to review simulation results by integrating the
results of a discrete event simulator with a virtual factory
model. The animation of the virtual factory is mainly
based on the animation of each individual object in the
virtual manufacturing cell. Every geometric model in
the virtual factory is an entity in the program known as
a node, and all nodes are structured in a node hierarchy.
A child node in the hierarchy inherits the motion of its
parent node. Nodes can be attached or detached
depending on if the corresponding parts in the virtual
factory are initially part of the node hierarchy. This is
actually a method that uses scene graphs for geometry
models. The animation of factory models is not automatic
due to the missing knowledge needed to determine how
to animate the complex behaviors of factory models.

Similar deficiency appears in the web-based simulation
visualization tool developed by Salisbury et al. [28].
Coded with Java3D, this system allows users to observe
simulation results remotely over the Internet by means
of 3D animations. However, it provides no discussion
on the complex behaviors of manufacturing. Kamat
presented a system called Dynamic Construction
^sualizer (DCV) for the visualization of construction
simulations [12, 13]. This system obtains its input in
the format of a Dynamic 3D Visualization Language,
which consists of text instructions. The instructions
describe basic behaviors such as creation (CREATE),
placement (PLACE), movement (MOVE), and rotation
(ROTATE) of 3D models in a browser. Since this
language is not extendable, the system lacks flexibility
when it has to deal with new simulation scenarios.

In the application of training, Dessouky developed a
virtual factory teaching system [4]. It provides a
workspace to illustrate the concepts of factory management
and design of complex manufacturing systems. This
system has the advantages of integrated simulations,
engineering education, Internet connection, and virtual
factories; but it still uses a separate simulation model from
its graphical interface. Zhou integrated discrete event
simulation and virtual reality technology in a system
for the visualization of a manufacturing factory [36]. In
this system, an animation script constructed with the
data from a simulated trace file drives the movements of
dynamically moving objects, such as materials, pallets,
components, and transport vehicles. Interactive behaviors

Yongmin Zhong and Xiaobu Yuan 3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing 21

are added to each scene for better understanding of
the manufacturing process and logistic operations.
Unfortunately, animation scripts are for computer
programmers. They are not suitable for manufactory
workers, and are de^nit이y not for decision makers.
This system also has difficulty for animating large scale
and complex manufacturing behaviors because of the
limits of animation scripts. Another integrated method
of virtual factory was presented in [35]. This method
uses static simulation to evaluate factory layout, and
dynamic simulation to evaluate the feasibility of operation
plans. It can only deal with simple assembly lines, and
cannot be extended to eval나ate complex production
processes.

There are a few discrete simulation packages, such as
eM-Plant [6] and WitnessVR [34], which can directly
generate the 3D animation from a discrete event
simulation. However, the 3D models provided by these
systems are not the real models in manufacturing
processes, and therefore they do not reflect the true
manufacturing scenarios. A few other packages, such
as AutoMod [27] and Quest [23], provide 3D animation
functions for simulating a manufacmring process.
However, they do not provide any connections with
discrete event simulations and users need to do many
tedious menu interactions to define complex manufacturing
behaviors. In addition, the 3D models provided by these
are limited in some specific manufacturing application.

2.3. Rapid development of 3D visualization from
discrete simulation

The cost of system development and the expandability
of visualization systems are also topics under active
investigation. There have been some approaches focusing
on reducing the size and complexity of 3D visualization
systems. They use reusable geometric objects in their
animation processes. For instance, Luckas proposed to
use animation elements in object-oriented system
frameworks [18], and discussed some ideas of using
object-oriented technology in 3D visualization [19]. In
the method developed by Elcacho for the rapid generation
of animation elements, animation elements encompass
geometric description of their visual appearances and
adaptable animation behaviors [5]. This work uses object-
oriented methodology in the design of animation
elements, but the emphasis is on the reusability enabled
by overloading behavior methods. Similarly, Sun applied
object-oriented methodology in the environment
construction of a virtual shop floor [32]. In this exercise,
solid models, behavior models, and control models are
constructed into basic classes for easier extension.
However, it does not provide discussions on how to
construct and implement basic classes. Mueller-Wittig
introduced a system for the visualization of electronics
assembly [20]. This work is at its initial stage, and only
the conceptual framework on visualizing electronics
assembly process is available.

Although object-oriented approaches facilitate the
reusability of objects and reduce development time, they
do not explicitly address the designing of reusable
frameworks while component-based software development
does [21]. Component-based software development
enhances software reuse and rapid development with
its framework. Blanchebarbe developed a component­
based 3D framework for the configuration of products
[3]. Software components, rather than software objects,
are used to encapsulate visual appearances and animation
behaviors. The framework supports the reuse of com­
ponents and primitive components can be visually
composed into large scenes. Unfortunately, the composition
of complex behaviors is not addressed. Quick presented
a component-based framework for the visualization of
simulation results [24], and discussed the monitoring
and control of the visualization system [25]. This research,
however, has not produced any convincing results but
some conceptual framework and some ideas on
visualization of simulation results.

Although object-oriented or component-based approaches
reduce the effort on behavior modeling and animation
programming, their s나pports are still weak in either the
integration of simulation data into animation scenes or
the connection of simulation results with animations.
Wenzel presented an approach for mapping discrete
event simulation models onto animation models [33].
This approach translates discrete simulation events into
animation actions according to some predefined translation
rules. However, no substantial results can be found to
verify the feasibility of this method. Furthermore, this
method cannot be extensively used since these rules are
related to the specific application.

Different from other approaches, this paper develops
the methods to analyze discrete simulation events and
to convert them into animation events so that the direct
connection from discrete simulation results to animations
becomes possible for the first time. The incorporation
of transformations in animation objects facilitates the
process of behavior creation and editing. The adaptation
of the techniques of 3D animation framework and 3D
components further improves the development speed
and stability of 3D application.

3. Analysis and Conversion of Discrete
Simulation Events

Discrete simulation events produced by a discrete
simulator cannot directly trigger animation sequences
mainly because the mapping from discrete simulation
events to animation is a many-to-one relationship. This
section develops the methods to analyze discrete
simulation events and to convert them into animation
events for 3D visualization.

3.1. Analysis of discrete simulation events
Most of the simulation packages are capable of

22 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19~32

automatically producing a trace file. This trace file
records events taking place during the time period of
each simulation run. It is a text file including millions
of records that describe the whole procedure of
simulation. For example, listed in Table 1 is a segment
of the trace file produced by the simulation tool 4<eM-
Plant" [6] in its procedure of simulating an electronics
assembly process. This table has four columns. The
elements in the first column are the events that trigger
the actions. The elements in the next two columns list
the time when events happen and the material ID numbers
respectively. The elements in the last column are the
locations of materials in a format of ^Factory-ID.Factory-
Area-ID.Factory-Family-ID.Factory-Module-ID.Factory-
Station-ID.* ,\ In this format, symbol indicates the
last string of the location, which can be a product on a
line ("Line"), a product on a station ("stn"), or an
additional new product to a factory family ("SPsource").
Fig. 1 illustrates some special strings in the trace file by
mapping these strings to 3D objects.

The behaviors of a particular material can be collected
from this table. For instance, Table 2 contains a collection
of items from Table 1 that shows some behaviors of the
material P21:l.

The trace file in Table 1 and Table 2 shows that the

Fig. 1. Mapping the trace file to 3D objects.

discrete simulation events generated by simulation output
provide the behavior information of the assembly process.
However, the trace file is abstract and very large in
volume. It is impossible for a non-expert user or even
an expert to either establish the relationships between
different discrete events or understand the complex
manufacturing process, lb display the simulation results,
a visualization system has to convert discrete events
into a special type of data that can trigger animation
behaviors. One important task is to analyze the structure
of discrete simulation events, and to display discrete
simulation events in forms of a graph. The analysis
process first extracts all the distinct event types and all
the behavior information of every source object, and

Table 1. A small simulation trace script fragment

Event Time Material Location

Out 1:00:16:17.0000 P21:l PRODN.FATP2.FATP2SA.STN_EATP2SA_02.Line
Out 1:00:17:03.2223 P21:2 PRODN.FATP2.FATP2SA.STN_FArP2SA_01.stn
Out 1:00:17:03.2223 P21:3 PRODN.FATP2.FATP2SA.STN_FArP2SA_01.Line
Out 1:00:17:03.2223 P21:7 PRODN.FATP2.FArP2SA.JSPmod.SPsource
Out 1:00:17:03.2223 P21:8 PRODN.FATP2.FATP2SA.JSPmod.SPsource

entranceEnd 1:00:17:05.2223 P21:2 PRODN.FATP2.FATP2SA.STN_FATP2SA_02.Line
Out 1:00:17:05.2223 P21:4 PRODN.FATP2.FATP2SA.STN_FArP2SA_01.Line

entranceEnd 1:00:17:05.2223 P21:7 PRODN.FATP2.FATP2SA.STN_FArP2SA_01.Line
Out 1:00:17:15.2223 P21:2 PRODN.FATP2.FATP2SA.STN_FArP2SA_02.Line
Out 1:00:17:21.8825 P21:l PRODN.FATP2.FATP2SA.STN_FArP2SA_02.stn
Out 1:00:17:21.8825 P21:2 PRODN.FATP2.FATP2SA.STN_FArP2SA_02.Line

entranceEnd 1:00:17:23.8825 P21:l PRODN.FArP2.FATP2SA.STN_FATP2SA_03.Line
Out 1:00:17:36.8825 P21:l PRODN.FATP2.FATP2SA.STN_FArP2SA_03.Line
Out 1:00:17:56.4935 P21:3 PRODN.FATP2.FATP2SA.STN_FArP2SA_01.stn
Out 1:00:17:56.4935 P21:4 PRODN.FAJF2.FA阪 P2S A.STN_FATP2S A_01 .Line
Out 1:00:17:56.4935 P21:8 PRODN.FATP2.FATP2SAJSPmod.SPsource
Out 1:00:17:56.4935 P21:9 PRODN.FATP2.FATP2SAJSPmod.SPsource

entranceEnd 1:00:17:58.4935 P21:3 PRODN.FATP2.FATP2SA.STN_FArP2SA_02.Line
Out 1:00:17:58.4935 P21:5 PRODN.FATP2.FATP2SA.STN_FArP2SA_01.Line

entranceEnd 1:00:17:58.4935 P21:8 PRODN.FATP2.FATP2SA.STN_FArP2SA_01 .Line
Out 1:00:18:08.4935 P21:3 PRODN.FATP2.FATP2SA.STN_FATP2SA_02.Line
Out 1:00:18:28.1026 P21:2 PRODN.FATP2.FATP2SA.STN_FATP2SA_02.stii
Out 1:00:18:28.1026 P21:3 PRODN.FATP2.FATP2SA.STN_FATP2SA_02.Lme

entranceEnd 1:00:18:30.1026 P21:2 PRODN.FATP2.FATP2SA.STN_FArP2SA_03.Line
Out 1:00:18:30.7915 P21:l PRODN.FATP2.FATP2SA.STN_FArP2SA_03.stn

entranceEnd 1:00:18:32.7915 P21:l PRODN.FArP2.FATP2SA.STN_FATP2SA_04.Line
Out 1:00:18:42.7915 P21:l PRODN.FATP2.FATP2SA.STN_FArP2SA_04.Line

Yongmin Zhong and Xiaobu Yuan 3D Visuali^ition of Discrete Event Simulation and Its Applications in Virtual Manufacturing 23

Table 2. The behaviors of the material "P21:1 ”

Event Time Material Location

Out 1:00:16:17.0000 P21:l PRODN.FATP2.FATP2SA.STN_FATP2SA_02.Line
Out 1:00:17:21.8825 P21:l PRODN.FATP2.FATP2SA.STN_FArP2SA_02.stn

entranceEnd 1:00:17:23.8825 P21:l PRODN.FATP2.FATP2SA.STN_FATP2SA__03.Line
Out 1:00:17:36.8825 P21:l PRODN.FATP2.FATP2SA.STN_FATP2SA_03.Line
Out 1:00:18:30.7915 P21:l PRODN.FATP2.FATP2SA.STN_FArP2SA_03.stn

entranceEnd 1:00:18:32.7915 P21:l PRODN.FATP2.FATP2SA.STN__FATP2SA_04.Line
Out 1:00:18:42.7915 P21:l PRODN.FATP2.FATP2SA.STN_FATP2SA_04.Line

Table 3. An animation event

Material Start Start Start End End End
Event Time Location Event Time Location

P21:l Out 1:00:17:21.8825
PRODN.FATP2.FAT
P2SA.STN_FATP2S

A_02.stn
Out 1:00:18:30.7915 PRODN.FATP2.FATP2SA.S

TN_FATP2SA_03.stn

then describes the complex manufacturing process in a
graph structure.

This graph structure reveals all possible sequences of
events. It helps users to understand the complex process,
and to create the logical link between discrete event
simulation and animation. Since the source of all the
events comes from different projects, these discrete events
often have different formats. Therefore, discrete events
need to be normalized before they can be processed
further. Furthermore, a routing mechanism also has to
be implemented to ensure that the discrete simulation
events can be directed to the animation objects on which
they have an effect.

In most cases, the discrete simulation events cannot
directly control the animation since discrete simulation
events and animations do not have a one-to-one
relationship. In fact, the relationship is a many-to-one
mapping. For example, in Table 2, the discrete simulation
events at the time instances of "1:00:17:21.8825”，
“1:00:17:23.8825”, “1:00:17:36.8825”, and “1:00:18:30.7915”
can all map to an animation event shown in Table 3. As
a result, the discrete simulation events have to be
converted into animation events by means of translation.
In addition, discrete simulation events often lack
necessaiy information when generating animation events
because discrete simulation events only provide the
state information of materials at different events/time.
Additional data has to be acquired from other sources
to decide the parameters needed before calling an
animation behavior function. In comparison to discrete
simulation events, this data is 아atic and needs only to
be acquired once.

3.2. Conversion of discrete simulation events into
animation events

It is therefore very important to build proper
correspondence between the discrete event simulator
and the animation scene. As shown in Fig. 2, this vital

Fig. 2. Analyzer framework.

task is accomplished in the proposed framework by an
analyzer that analyzes discrete simulation events, and
translates them into animation events by transforming a
sequence of two and more successive discrete simulation
events into one animation event. To reflect the
manufacturing process described in the simulation
output and to aid users creating animation events, a
graph structure is built to show all possible successor
events of each event. This graph can be edited by skipping
unimportant events. Upon the completion of the graph
structure, users can pick out sequences from the graph
and generate corresponding animation events. Types of
animation events can also be defined in the analyzer.
An animation event is generated after the occurrence of
a certain sequence of one or more discrete simulation
events. Each animation event provides a set of parameters.
These parameters are calculated from a set of sequential
discrete simulation events.

Before the analysis takes place, however, a normalizer

24 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19-32

is necessary to convert the data input stream into
system events. Regardless of their sources, all system
events share some common characteristics. Each event
consists of a set of data fields. In addition, events
provide an event type and a source object ID. The
source object is the object to which the system event is
related. All normalizer modules are implementations of
the same interface. They are placed in a special package.
Users can choose the normalizer type from all classes
contained in the package at run time. Id add a new
implementation to the normalizer, a user simply places
the file of this new class into the package. There is no
need to change the main program.

The responsibility of the analysis and display module
in the analyzer framework is to establish the relationships
between different discrete event types according to the
ID of source objects and their sequences of occurrence.
Discrete simulation events are then produced from the
discrete events and the relationships between the
discrete events. The presentation of discrete simulation
events is in the format of a graph structure, which
reflects the assembly process and helps users to convert
discrete simulation events into animation events. Since
only a subset of event types needs to be translated, the
event router module is employed to prevent other discrete
simulation events from being sent to translation modules.
It is in charge of dispatching incoming events to only
those translation modules that request to receive them.

These discrete simulation events signal the change of
an object position in the simulation environment. To
trigger the animation of an object and the animation of
other objects with which this object has interactions,
the discrete simulation events are translated into animation
events, and then sent to the animation objects whose
animation behaviors are under the control of these
events. The conversion of discrete simulation events is
accomplished by a set of translation modules. The
translation modules can be customized to the requirements
of a specific project. They also have links to animation
objects, which receive the created animation events during
visualization. In cases when multiple modules are
used, each event should only be sent to the modules
that are responsible for its conversion to save system
resources.

The translation modules work as a group of finite
automata. They receive from the event router all the
event types that appear in the input channel. For each
event source of discrete simulation events that reaches
the translation module, a new state is stored. State
changes take place according to the translation rules of
the automata. An animation event is created when a
state change happens to be an end event. Its parameters
are determined by the discrete simulation events received
by the automata. The created animation event is finally
broadcasted to all the animation objects, which are event
listeners registered with the translation module for the
specific event type.

4・ Component-based Animation Framework

According to component theory, a software component
is a building block in a software system that has an
explicitly defined interface designed for reusability [29].
The proposed animation framework follows the object-
oriented application frameworks [7]. It uses dedicated
authoring tools to fill a generic skeleton application
with components. The skeleton is in charge of invoking
and integrating the components5 functionalities. In this
approach, a component can be selected from a library,
and reused after minor adaptation and customization.
Pre-defined patterns then determine the proper layout
of components in the skeleton application. Since authors
do not need to know the cooperation of components, no
programming skills are required.

As shown in Fig. 3, the component-based animation
framework consists of a 3D runtime framework and an
authoring framework. The 3D runtime framework has
the basic interfaces for loading the components. A 3D
light, a 3D view, and an animation event can be plugged
in this framework as components. All the animation
objects are represented as 3D components and stored in
the animation object library. The animation framework
loads animation objects from the animation object
library. While the rendering kernel provides the graphics
functions to set up a scene and to render picture frames,
the event scheduler provides the communication functions
to handle all events, such as animation events, component
events, and user interactive events.

In comparison, the authoring framework has an
animation viewer to display the visualization results. It
provides the visual tool for the author to configure 3D
scenes, and to control the generation and release of
animation events for 3D visualization. In addition, it
has a behavior editor for the author to create new 3D
animation objects, and to define their behaviors with
the existing animation methods and the composition of
3D object models. The layout editor produces the scene
model according to the layo니t of animation objects. It

Fig. 3. Component-based animation framework.

Yongmin Zhong and Xiaobu Yuan 3D Visualization qfDiscrete Event Simulation and Its Applications in Virtual Manufacturing 25

is also responsible for connecting animation events to
the related animation objects.

4.1. Animation objects
An animation object is a component with encapsulated

geometry and behaviors. As shown in Fig. 4, the
component framework uses a scene graph to store the
geometric properties of an animation object, and encloses
a group of animation methods to define its behaviors.
The basic 니nits of a scene graph are scene objects, and
a scene object may contain other scene objects as its
children. The scene graph is scalable in size and flexible
in making changes to scene objects. The animation
methods, on the other hand, define actions in response
to events, each of which can be a modification to
transformation, an interaction from the user, or a change
of internal state. In addition, the framework employs
three interfaces to establish the connection between
events, behaviors, and animation of an animation object.

The event interface consists of an event handler and

an event listener. The former is in charge of attribute
accessing and event processing to fire, receive, and sort
events; and the latter provides methods to link an event
to a behavior. The event interface also includes some
other basic features of a component, including component
reflection and persistence. In comparison, the behavior
interface provides access to the behavior description
and other aspects of the component. The animation
methods are represented as behavior components. The
existing animation methods can be edited and new
animation methods can be added through this interface.
The animation methods are further implemented by
animation interpolators at run time to provide the specific
transformation information. The major animation
interpolators are listed in Table 4, and they are for
translation, rotation, translation with rotation, and scene
graph location change of animation objects respectively.

The component framework uses a scene location
node (SLN) to store the location of a scene object in
the graph, and a transformation node (TN) to maintain

Scene object

Scene graph root or
a scene object

SLN-…Scenegraph Location property Node
SLC―-Scenegraph Location Controller node
TN-Transformation property Node

Fig. 4. The component structure of an animation object.

Ih미e 4. Animation interpolators

Interpolator Constructors Functions

lY-anslation Interpolator (long tl, long t2, Transform Group
tg, Transform 3D t3d, Point 3D pl, Point 3D p2);

To interpolate a tran이ation of an object from location A at the
time Ti to location B at the time T2

Rotation Interpolator (long tl, long t2, Transform Group tg,
Transform 3D t3d, Quat 4D ql, Quat 4D q2);

To interpolate a rotation of an object about an axis from angle A
at the time Ti to angle B at the time T2

Ttans With Rot Interpolator (long tl, long t2, Transform
Group tg, Transform 3D t3d, Point 3D pl, Quat 4D ql, Point
3d p2, Quat 4D q2);

lb interpolate a translation of an object from location A at the
time T] to location B at the time T2 while a rotation about the axis
of the object from angle A at the time T| to angle B at the time T2

Scene Graph Location Interpolator (long t, Branch Group
parent, boolean create);

lb remove and attach an animation object from one scene graph
branch to another scene graph branch

26 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19-32

the transformation values of the sub-graph attached to
it. In addition, two controllers are used. One is a
transfonnation controller (TC) that updates transformation
at run time according to the information provided by
animation interpolators. Meanwhile, it fires an event to
notify an update to the transformation. The other is a
scene location controller (SLC) that controls both the
detachment and attachment of a scene object from and
to a scene graph branch according to the receiving events.
Meanwhile, it fires an event after the attachment or
detachment. The goal of this controller is to facilitate
dynamic scene graph structure and to generate an instant
impact on the transformation matrix of scene objects.

The scene graph interface provides access to the
scene graph with its three types of methods. The first
type works with the root scene graph. It includes
methods to attach a scene object to or detach a scene
object from the scene graph freely at run time, which
promotes the reuse of scene objects. The second type
work with the sub-scene graph. It includes methods to
set the geometry of a scene object or link to other scene
objects. The third type includes methods to update
time-varying properties in real time.

Furthermore, an event-driven animation thread can
also be easily and quickly generated to handle the
animation execution. The animation thread consists of

a series of SLC and TC controllers in the time order of
the occurrences of the events corresponding to the
controllers. A behavior can be finally decomposed into
a series of transformations under the control of controllers.
The execution of a behavior involves a submission of
all controllers in the animation thread of this behavior,
and the initiation of the controllers one by one in the
time order of the occurrences of the events corresponding
to the controllers.

4.2. Animation object library
The presented animation framework supports the

creation of 3D animation objects through its 3D
animation object library. Stored in the repository of this
library are animation objects, each of which is ready to
use in a drag-and-drop fashion. Shown in Fig. 5 are
some of the animation objects it has for electronics
assembly, with their animation methods listed Table 5.

Based upon the Java Beans component model, this
library supports rapid development of new objects. It
allows users to compose new objects from the existing
objects or from parts of the existing objects. For newly
created animation objects, users can compose new
animation methods from the existing animation methods.
Either of the compositions does not require users to
have any prior knowledge of internal implementation.

Fig. 5. Library of 3D factory elements.

Yongnun Zhong and Xiaobu Yuan 3D Visualization qf Discrete Event Simulation and Its Applications in Virtual Manufacturing 27

Table 5. Some animation methods for animation objects

Animation Elements Animation Methods Actions

Crane

void slideForkMoveLeft(Long to)
void slideForkMoveMiddle(Long to)
void slideForkMoveRight(Long to)
void forkbaseMovePos(Long ", float relpos);
void craneMoveForward(Long to, Long tb float distance);
void craneMoveBackward(Long to, Long tb float distance);

slideFork move left
slideFork move middle
slideFork move right
forkbase move up
forkbase move down
crane move forward
crane move backward

primeMover

void movePMoverForward(Long to, Long tb float distance);
void movePMoverBackward(Long to, Long tb float distance);
void tumPMoverRight(Long to, Long ti);
void tumPMoverLeft(Long to, Long ti);

primeMover move forward
primeMover move backward
primeMover right turn
primeMover left turn

Container
Carrier

void moveCCarrierForward(Long ", Long tb float distance);
void moveCCarrierBackward(Long 0 Long tb float distance);
void tumCCarrierRight(Long ", Long t】)；

void turnCCarrierLeft(Long to, Long ti);

ContaineiCarrier move forward
ContainerCarrier move backward
ContainerCamer turn right
ContainerCarrier turn left

bayPlatform void moveBayPlattformUp(Long to, Long q);
void moveBayPlattformDown(Long to, Long ti); bayPlatform move up 45°

elevator void openDoor(Long to);
void closeDoor(Long to);

elevator door slide
open/close

forklift

void moveForkliftForward(Long to, Long float distance);
void moveForkliftBackward(Long ", Long tb float distance);
void tumForkliftAround(Long t°, Long q);
void tumForkliftRight(Long to, Long q);
void turnForkliftLeft(Long to, Long ti);
void moveBlade(Long to, Long tb float relpos);

forklift move forward
forklift move backward
forklift turn 180°
forklift right turn
forklift left turn
blade move up
blade move down

Autom 던 ed
Palletjack

void movePalletjackForward(Long 也 Long tb float distance);
void movePalletjackBackward(Long to, Long tb float distance);
void moveBIade(Long to, Long tb float relpos);

automated pallet jack move forward
automated pallet jack move backward
blade move up
blade move down

Screwdriver screwObject(Long to, Long tb Aelement *elemPtr); ScrewObject

Lifter

lifterUp(Long to, Long tb Aelement *elemPtr, float startht, float endht);
lifterUp(Long to, Long ti, float startht, float endht);
lifterDown(Loii응 ", Long tb Aelement *elemPtr, float startht, float endht);
IifterDown(Long ", Long tb float startht, float endht);

LifterUp

lifterDown

Furthermore, the communication between components
provided by the component framework enables this
library to easily connect the animation functions with
animation event sources. These sources control the object
animations in the scene. They initiate animation events
for them to trigger the corresponding animation functions.

The representation of a factory and the description of
its inherent processes are complex in nature. They
often result in a scene with over millions of polygons
to render. Tb make visualization adaptive and capable
of producing high-quality results on low-cost platforms,
the animation framework has been established based on
the concept of level-of-detail (LOD) in its visualization.
The geometric model of each object contains three
levels of detail in respect to the model's complexity, i.e.
simple, moderate, and high. Fig. 6 shows the different
LODs on a box sealer animation element. In this
particular animation element, the low representation
has approximately 400 polygons, the medium has

approximately 1000 polygons, and the high has
approximately 5000 polygons.

4.3. Authoring tools
The authoring framework provides tools to create or

modify a 3D animation quickly and efficiently for
different applications. These authoring tools include

28 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19-32

layout editor, behavior editor, and animation viewer.
The layout editor is to visually construct a scene model
from individual objects. With this editor, objects are
selected from the 3D animation object library, and are
positioned within the scene. All objects are organized
into a tree hierarchy, which makes it easy to change the
layout of scene subsets. Object customization is
accomplished by accessing the public methods of
objects, and object positions are defined either visually
by drag-and-drop or manually by inputting the
coordinates. The data to set the coordinate values are
retrieved from the simulation specification. Any change
to the simulation specification is immediately reflected
in the positioning of objects in animation scene, and
any change to object positions results immediate changes
in simulation specification. Moreover, animation methods
of objects can be connected to the animation events
created by the analyzer.

Animation behavior editor is responsible for the
creation and testing of new 3D animation objects to
make the creation process of 3D animation objects faster
and easier. This editor loads 3D objects for vis니시ization.
Animation behaviors are specified by customizing
objects, behavior components. With this editor, new
objects can be created from the existing 3D objects in
the library, and new behavior components can be
defined from combinations of the existing behavior
components. A 3D object becomes an animation object
with animation methods, and those methods are
customized from behavior components. Furthermore,
the functionality of the animation objects can be tested
during the entire customization process. By calling the
animation methods with test parameters, the visualization
system is able to show the resulting animations
immediately.

The animation viewer is to display the visualization
result. To run an animation sequence for the first time,
however, the animation viewer needs to control the
generation and release of the animation events. After
the animation objects receive the animation events, they
start to generate animations by directly manipulating
the scene's geometry and appearance in a fixed time
frame, lb enable users to search for any particular process
events, the speed of animation is adjustable. Fast-forward
and jumping to certain time points are allowed.

5. Implementations and Applications
in Virtual Manufacturing

5.1. Implementations
A 3D visualization system has been successfully

developed with Java3D and Java Beans. The
implementation relied heavily on the software component
technology. Java3D [31] uses a high-level 3D graphics
kernel based on the concept of scene graph, and is
ready to comply with component standards. The
visualization system uses Java Beans [10] in its

Fig. 7. System flowchart.

implementation, and has achieved flexible configuration
and reusable building blocks, while keeping the
complexity of this task low. The deployment of
component technology allows easy integration with the
existing visual building tools in both the initial system
development phase and later for implementations in
different applications.

The system flowchart is shown in Fig. 7. The discrete
simulation produces discrete simulation events. The
analyzer receives the discrete simulation events from
the simulation, and translates the discrete simulation
events into animation events. New animated objects
can be created in the animation behavior editor from
the existing 3D object models and animation methods.
All 3D animation objects are stored in a library. In the
scene layout editor, 3D animated objects from the
library are laid out in a scene. Simulation parameters
that have influence on the scene layout or its animation
behavior are linked to the relevant objects. The
connections between animation event sources and
animation methods of the 3D animation objects can
also be established. Upon the completion of the layout,
the animation viewer displays the scene according to
the animation events received from the analyzer.

5.2. Applications in virtual manufacturing
Virtual manufacturing is the use of computer models

and simulations of manufacturing processes to aid in
the design and production of manufactured products
and environments [3이. It has been recognized as a
desirable feature in modem manufacturing systems to
improve product quality, increase diversity of products,
and reduce product development time and cost.

The established approach for 3D visualization of
discrete event simulation has been successfully applied
in virtual manufacturing to crate a 3D simulation model
of an electronics assembly factory. The process of
constructing the virtual factory is shown as in Fig. 8.
The manufacturing process information is collected
from the real manufacturing system and is organized in
different tables to describe the manufacturing process.
According to the manufacturing process description,
the 2D simulation model of the manufacturing system

Yongmin Thong and Xiaobu Yuan 3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing 29

Fig. 8. Architecture of constructing a virtual factory.

is created by a commercial discrete simulation tool
[6]. The simulation model is executed and

generates results and reports based on the simulation
run.

To visualize the 2D discrete event simulation of the
manufacturing factory, the simulation results are
transformed into animation events that can trigger and
control the behaviors of the manufacturing system, and
3D objects are modeled according to their geometric
dimensions and appearances, and are stored in the
library. These 3D objects can be divided into two types:
static objects and moving objects. The static objects
refer to the objects with the fixed positions during the
manufacturing process, such as building, production
equipments and workstations, and production lines.
Some objects whose positions are fixed during the
manufacturing process while may be changed with the
different kinds of products are also belonged to static
objects. The quantity of each kind of static objects can
be obtained from the manufacturing system description
tables. The positions of the static objects can be
obtained from the shop floor blueprint or meas니red
from the actual shop floor. According to these positions,
the environment (scene) of the manufacturing system is
produced by the layout functions provided by the
animation framework.

The quantity and positions of the moving objects
such as materials, pallets, components, lifters and

transport vehicles are obtained from the manufacturing
process description tables. The movements of moving
objects are triggered by the animation events provided
by the analyzer.

With the created factory model, users can visu이ize in
the 3D environment all the manufacturing processes,
incl냐ding the flow of materials, size of buffers, and line
balancing. Based on the visualization results, refinements
to the existing processes are made, for example, on
minimal process time, reduced wait time, and reduced
buffer size.

Demonstrated in Fig. 9 are the analysis and conversion
of simulation results generated by "eM・Plant” for the
electronics assembly process. The graph describes the
structure and relationships of the discrete simulation
events. The dialogue box shows the selected discrete
simulation events for creating an animation event. The
user can select a node in the graph and set it as the start
event, end event, or middle event for creating an
animation event.

In the following figures, Fig. 10 illustrates the layout

Fig. 9. Analysis and conversion of discrete simulation events.

Fig. 10. The shop floor layout.

30 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19-32

Fig. 11. Testing the behaviors of animated objects.

Fig. 13. Virtual assembly and test lines.

of the shop floor, Fig. 11 shows an example of testing
the behaviors of animation objects, Fig. 12 shows the
virtual shop floor and Fig. 13 shows the virtual assembly
and test lines. There are some types of information that
cannot be visualized as animated 3D models. These types
of information contain valuable background information
about the system parts and dynamic processes of the
system. Such information is also provided for users to
understand the manufacturing environment and the
progress of the manufacturing process, although not
appropriate to be included through animation. Fig. 14
shows the virtual shop floor with additional
information.

Yongmin Thong and Xiaobu Yuan 3D Visualization of Discrete Event Simulation and Its Applications in Virtual Mam^acturing 31

6. Conclusions and Future Work

Presented in this paper is a new approach for 3D
visualization of discrete event simulation. By developing
new methods to analyze discrete simulation results and
to convert them into animation events for the generation
of 3D animation, this approach creates an innovative
and efficient connection between discrete event
simulations and 3D animations. In addition, it develops
a 3D animation framework for the visualization of
discrete simulation results. This framework uses the
software component technology, and supports the reuse
of animation objects and behavior components. It
allows rapid development of animations from simulation
results. By means of a library of 3D animation objects
and easy-to-use graphics editors, this visualization
system does not require its users to have any special
knowledge of computer graphics. The presented approach
has been successfully applied in virtual manufacturing
for visualizing the discrete simulation results of the
entire assembly processes for an electronics assembly
factory.

Future research will focus on the synchronous
integration of 3D visualization with discrete event
simulations. The main work includes generating animation
events and the layout for any given scene automatically
from simulation logic. A knowledge-based approach will
be established to translate the simulation logic of certain
simulators automatically into animation events and
scene layouts.

Acknowledgements

This work is supported in part by Natural Sciences
and Engineering Research Council (NSERC) of Canada.

References

[1] Banks, J. (1999), Discrete event simulation, Proceedings
of the 1999 Winter Simulation Conference, 7-13.

[2] Birta, L.G. and Ozmizrak, F.N. (1996), Knowledge-based
approach for the validation of simulation models: the
foundation, ACM Transactions on Modeling and Computer
Simulation, 6(1), 76-98.

[3] Blanchebarbe, R and Diehl, S. (2001), A framework for
component based model acquisition and presentation
using Java 3D, ACM Proceedings of the sixth international
conference on 3D Web technology, Paderbon, Germany,
117-125.

[4] Dessouky, M.M., Verma, S., Bailey, D.E. and Rickel, J.
(2001), A methodology for developing a web-based
factory simulator for manufacturing education, HE
Transaction, 33(3), 167-180.

[5] Elcacho, C., Schafer, Aa, Domer, R. and Luckas, V
(1998), Performing 3D scene and animation authoring
tasks efficiently: an innovative approach, IEEE Proceedings
of Computer Graphics International, Hannover, Germany,
242-244.

[이 eM-Plant reference manual (2002), version 4.6,

lecnomatix Tecnologies Ltd.
[기 Fayad, M.E., Schmidt, D. and J아mson, R. (1999), Building

application frameworks: object-oriented foundations of
framework design, New York: Wiley, ISBN 0471248754.

[8] Gennart, B.A. and Luckham, D.C. (1992), Validating
discrete event simulations using event pattern mappings,
Proceedings of the 29th ACM4EEE Design Automation
Conference, 414-419.

[이 Geuder, D. (1995), Object oriented modeling with
Simple++, Proceedings of the 1995 Winter Simulation
Conference, 534-540.

[1 이 Hamilton, G. (July, 1999), The JavaBeans™ 1.01
specification, available online from http:〃java.sun.com/
beans/ docs/spec.html.

[11] Hoeger, H. and Jones, J. (1996), Integrating concurrent
and conservative distributed discrete-event simulators,
Simulation for Understanding, 67(5), 303-314.

[12] Kamat, V.R. and Martinez, J.C. (2000), 3D vis나alization
of simulated construction operations, Proceedings of the
32nd Winter Simulation Conference, Orlando, USA, Vbl.
2, 1933-1937.

[13] Kamat, VR. and Martinez, J.C. (2001), Enabling smooth
and scalable dynamic 3D visualization of discrete-event
construction simulations, Proceedings of the 33rd Winter
Simulation Conference, Arlington, USA, Vol. 2, 1523-1533.

[14] Kelsick, JJ. and Vance, J.M. (1998), The VR factory:
discrete event simulation implemented in a virtual reality
environment, 1998 ASME Design Engineering Technical
Conferences, Atlanta, Georgia (CD-ROM).

[15] Kheir, N.A. (1996), System modeling and computer
simulation, New York, Marc이 Dekker.

[16] Klingstam, P and Gullander, R (1999), Overview of
simulation tools for computer-aided production engineering,
Computers in Industry, 38(2), 173-186.

[17] Law, A.M. and Kelton, W.D. (2000), Simulation Modeling
and Analysis, 3rd Edition, The McGraw-Hill Companies,
Inc.

[18] Luckas, V and Broil, T. (1997), CASUS: an object-
oriented three-dimensional animation system for event-
oriented simulators, Proceedings of Computer Animation,
Geneva, Switzerland, 144-150.

[19] Luckas, V and Domer, R. (2000), Experiences from the
future - 나sing object-oriented concepts for 3D visualization
and validation of Industrial Scenarios, ACM Computing
Surveys, 32(1).

[2이 Mueller-Wittig, W., Jegathese, R. and Song, M., etc.
(2002), Virtual Factory-Highly Interactive Visualisation
for Manufacturing, fYoceedings of the 2002 Winter
Simulation Conference, San Diego, California, Vol. 2,
1061-1064.

[21] Nierstrasz, O., Gibbs, S. and Tsichritzis, D. (1992),
Component-oriented software development, Communications
of the ACM, 35(9), 160-165.

[22] Praehofer, H., Sametinger, J. and Stritzinger, A. (1999),
Discrete Event Simulation using the JavaBeans Component
Model, International Conference On Web-Based Modelling
& Simulation, San Francisco, California, also available
online from .http://www.swe.uni-linz.ac.at/publications/

[23] Quest (2000), Delmia Corporation, .http://www.delmia.com/
[24] Quick, J.M. (2002), Component-based 3D Visualization

of Simulation Results, The Advanced Simulation
Technologies Conference, San Diego, USA, also available
online from .http://www.scs.org/scsarchive

[25] Quick, J.M. (2003), Monitoring and Control of Systems
by Interactive Virtual Environments, 10th International

http:%25e3%2580%2583java.sun.com/
http://www.swe.uni-linz.ac.at/publications/
http://www.delmia.com/
http://www.scs.org/scsarchive

32 International Journal of CAD/CAM Vol. 4, No. 1, pp. 19~32

Conference on Human-Computer Interaction, Crete,
Greece, 1101-1105.

[2이 Rohrer, M.W. (2000), Seeing is believing: The importance
of visualization in manufacturing simulation, Proceedings
of the 2000 Winter Simulation Conference, 1211-1216.

[27] Rohrer, M.W. and McGregor, LW. (2002), Simulating
Reality Using AutoMod, Proceedings of the 2002 Winter
Simulation Conference, Salt Lake City, USA, 173-181.

[28] Salisbury, C.F., Farr, S.D. and Moore, J.A. (1999), Web­
based simulation visualization using JAVA3D, Proceedings
of the 1999 Winter Simulation Conference, Vol. 2, 1425-
1429.

[29] Sametinger, J. (1997), Software engineering with reusable
components, Springer-Verlag, ISBN 3-540-62695-6.

[3이 Shukla, C., 巧zquez, M. amd Chen, F.F. (1996), Virtual
manufacturing: an overview, Computers & Industrial
Engineering, 31(1-2), 79-82.

[31] Sowizral, H., Rushforth, K. and Deering, M. (1999), Java

3D™ API Specification, available online from http://
java.sun.com/docs/books/java3d/.

[32] Sun, L. and Ning, R. (2002), The research on constructing
of the virtual shop-floor environment, The Third
International Conference on Virtual Reality and its
Application in Industry, Hangzhou, China, 389-394.

[33] Wenzel, S. and Jessen, U. (2001), The integration of 3-D
Visualization into the simulation-based planning process
of logistics systems, Simulation, 77(3-4), 114-127.

[34] Witness VR (2003), Lanner Group, http://www.lanner.com/
[35] Zhai, W., Fan, X., Yan, J. and Zhu, P. (2002), An

integrated simulation method to support virtual factory
engineering, International Journal of CAD/CAM, 2(2),
39-44.

[36] Zhou, H., Tan, H.S. and Sivakumar, A.L (2001), Digital
Models for Manufocturing Process Msualization, Proceedings
of International Conference on Integrated Logistics,
Singapore, 113-122.

Yongmin Zhong is a research fellow at Department of
Mechanical Engineering, Monash University, Australia. His
research interests include virtual reality, geometric modelling
and CAD/CAM. Prior to joining Monash University, he worked
as a postdoctoral fellow at School of Computer Science,
University of Winder, ON, Canada. He also worked as a research
fellow at School of Computer Engineering, Nanyang Technological
University, Singapore and a lecturer at Department of Aeronautical
Manufacturing, Northwestern Polytechnical University, China.
He obtained a BSc degree in 1990 from Northwest University
(China), an MSc degree in 1993 and a Ph.D. degree in 2000
from Northwestern Polytechnical University (China).

Xiaobu Yuan is an Associate Professor with the School of
Computer Science, University of Windsor, ON, Canada. His
research interests include advanced human/computer interaction,
robotics, intelligent systems, and software engineering and testing.
He received the B.Sc. degree in computer science from the
University of Science and Technology of China, Hefei, in 1982,
the M.S. degree in computer science from the Institute of
Computing Technology, Academia Sinica, Beijing, China in
1984, and the Ph.D. degree also in computer science from
University of Alberta, Edmonton, AB, Canada, in 1993. Dr.
Yuan has been a reviewer of international journals and a member
in program committees of international conferences, including
IEEE ICRA'2000, ICRA'2002, and ICRA'2004.

Yongmin Zhong Xiaobu y니리!

java.sun.com/docs/books/java3d/
http://www.lanner.com/

