• Title/Summary/Keyword: virtual sensors

Search Result 258, Processing Time 0.029 seconds

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

Virtual In-situ Sensor Calibration and the Application in Unitary Air Conditioners (유닛형 공기조화기 센서의 가상보정 방법 및 적용 특성 분석)

  • Yoon, Sungmin;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.65-72
    • /
    • 2018
  • Since data-driven building technologies have been widely applied to building energy systems, the accuracy of building sensors has more impacts on the building performance and system performance analysis. Various building sensors, however, can have typical errors including a random error (noise) and a systematic error (bias). The systematic error is indicated by the difference between the mean of measurements and their true value. It may occur due to the sensor's physical condition, measured phenomena, working environments inside the systems. Unfortunately, a conventional calibration method has limitations in calibrating the systematic errors because of the difference between working environments and calibration conditions. In such situations, a novel sensor calibration method is needed to handle various sensor errors, especially for systematic errors, in building energy systems having various thermodynamic environments. This study proposes a building sensor calibration method named Virtual In-situ Calibration (VIC) and shows how it is applied into a real building system and how it solves the sensor errors.

Prediction of Head Movements Using Neck EMG for VR (근전도 신호를 이용한 헤드-트래킹 지연율 감소 방안 연구)

  • Jung, Jun-Young;Na, Jung-Seok;Lee, Chae-Woo;Lee, Gihyeon;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.365-370
    • /
    • 2016
  • The study about VR (Virtual Reality) has been done from the 1960s, but technical limits and high cost made VR hard to commercialize. However, in recent, high resolution display, computing power and 3D sensing have developed and hardware has become affordable. Therefore, normal users can get high quality of immersion and interaction. However, HMD devices which offer VR environment have high latency, so it disrupts the VR environment. People are usually sensitive to relative latency over 20ms. In this paper, as adding the Electromyogram (EMG) sensors to typical IMU sensor only system, the latency reduction method is proposed. By changing software and hardware components, some cases the latency was reduced significantly. Hence, this study covers the possibility and the experimental verification about EMG sensors for reducing the latency.

Real-Time Obstacle Avoidance of Autonomous Mobile Robot and Implementation of User Interface for Android Platform (자율주행 이동로봇의 실시간 장애물 회피 및 안드로이드 인터페이스 구현)

  • Kim, Jun-Young;Lee, Won-Chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper we present an real-time obstacle avoidance technique of autonomous mobile robot with steering system and implementation of user interface for mobile devices with Android platform. The direction of autonomous robot is determined by virtual force field concept, which is based on the distance information acquired from 5 ultrasonic sensors. It is converted to virtual repulsive force around the autonomous robot which is inversely proportional to the distance. The steering system with PD(proportional and derivative) controller moves the mobile robot to the determined target direction. We also use PSD(position sensitive detector) sensors to supplement ultrasonic sensors around dead angle area. The mobile robot communicates with Android mobile device and PC via Ethernet. The video information from CMOS camera mounted on the mobile robot is transmitted to Android mobile device and PC. And the user can control the mobile robot manually by transmitting commands on the user interface to it via Ethernet.

A Testing Technique based on Virtual Prototype for Embedded Software (가상 프로토타입 기반 임베디드 소프트웨어의 테스트 기법)

  • Ryu, Hodong;Jeong, Sooyong;Lee, Sunghee;Kim, Jihun;Park, Heungjun;Lee, Seungmin;Lee, Woo Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.307-314
    • /
    • 2014
  • Recently, software reliability and safety issues are seriously considered since failures of embedded systems may cause the damages of human lifes. For verifying and testing embedded software, execution environment including sensors and actuators should be prepared in the actual plants or virtual forms on PC. In this paper, we provide the virtual prototype based code simulation techniques and testing framework on PC. Virtual prototypes are generated by combining the Adobe's Flash SWF images corresponding to the state machine of HW or environment components. Code simulation on PC is possible by replacing the device drivers into virtual drivers which connect to virtual prototypes. Also, testing is performed by controlling the states of virtual prototype and simulators. By using these tools, embedded software can be executed in the earlier development phase and the efficiency and SW quality can be enhanced.

Estimation of Cable Tension Force by ARX Model-Based Virtual Sensing (ARX모델기반 가상센싱을 통한 사장교 케이블의 장력 추정)

  • Choi, Gahee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.287-293
    • /
    • 2017
  • Sometimes, it is impossible to install a sensor on a certain location of a structure due to the size of a structure or poor surrounding environments. Even if possible, sensors can be frequently malfunctioned or improperly operated due to lack of adequate maintenance. These kind of problems are solved by the virtual sensing methods in various engineering fields. Virtual sensing technology is a technology that can measure data even though there is no physical sensor. It is expected that this technology can be also applied to the construction field effectively. In this study, a virtual sensing technology based on ARX model is proposed. An ARX model is defined by using the simulated data through a structural analysis rather than by actually measured data. The ARX-based virtual sensing model can be applied to estimate unmeasured response using a transfer function that defines the relationship between two point data. In this study, a simulation and experimental study were carried out to examine the proposed virtual sensing method with a laboratory test on a cable-stayed model bridge. Acceleration measured at a girder is transformed to estimate a cable tension through the ARX model-based virtual sensing.

3D Virtual Reality Game with Deep Learning-based Hand Gesture Recognition (딥러닝 기반 손 제스처 인식을 통한 3D 가상현실 게임)

  • Lee, Byeong-Hee;Oh, Dong-Han;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2018
  • The most natural way to increase immersion and provide free interaction in a virtual environment is to provide a gesture interface using the user's hand. However, most studies about hand gesture recognition require specialized sensors or equipment, or show low recognition rates. This paper proposes a three-dimensional DenseNet Convolutional Neural Network that enables recognition of hand gestures with no sensors or equipment other than an RGB camera for hand gesture input and introduces a virtual reality game based on it. Experimental results on 4 static hand gestures and 6 dynamic hand gestures showed that they could be used as real-time user interfaces for virtual reality games with an average recognition rate of 94.2% at 50ms. Results of this research can be used as a hand gesture interface not only for games but also for education, medicine, and shopping.

A Study of Evaluating VR Learning Styles on User Attention and Memory (가상현실 교육설계방식에 따른 학습자 주의와 학습 기억에 관한 연구)

  • Park, Kyoung-Shin;Goo, Ja-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.119-126
    • /
    • 2007
  • This paper presents a study investigating the effects of VR learning style on user attention and memory. The study involved users performed the guided or unguided style learning in the virtual environment while user attention was measured through physiological sensors (EEG, ECG, and GSR) and an eye tracking system. The users experienced the five specific events in a virtual environment associated with different stimuli, while they were given more specific goals during the guided task whereas they were given more goal asking them to actively search for the interesting items during the unguided task. The subject's attentions workload, feelings, memories about VR experience were measured by using a variety of physiological sensors during the task, video analysis, and post test survey. The results showed that the unguided task followed by the guided task made a considerable learning effect by giving a preview effect to the user. Moreover, the guided task drew more user attention and mental workload than the unguided task did.

A Study on the Development of Multi-User Virtual Reality Moving Platform Based on Hybrid Sensing (하이브리드 센싱 기반 다중참여형 가상현실 이동 플랫폼 개발에 관한 연구)

  • Jang, Yong Hun;Chang, Min Hyuk;Jung, Ha Hyoung
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.355-372
    • /
    • 2021
  • Recently, high-performance HMDs (Head-Mounted Display) are becoming wireless due to the growth of virtual reality technology. Accordingly, environmental constraints on the hardware usage are reduced, enabling multiple users to experience virtual reality within a single space simultaneously. Existing multi-user virtual reality platforms use the user's location tracking and motion sensing technology based on vision sensors and active markers. However, there is a decrease in immersion due to the problem of overlapping markers or frequent matching errors due to the reflected light. Goal of this study is to develop a multi-user virtual reality moving platform in a single space that can resolve sensing errors and user immersion decrease. In order to achieve this goal hybrid sensing technology was developed, which is the convergence of vision sensor technology for position tracking, IMU (Inertial Measurement Unit) sensor motion capture technology and gesture recognition technology based on smart gloves. In addition, integrated safety operation system was developed which does not decrease the immersion but ensures the safety of the users and supports multimodal feedback. A 6 m×6 m×2.4 m test bed was configured to verify the effectiveness of the multi-user virtual reality moving platform for four users.

Investigating the spatial focusing performance of time reversal Lamb waves on a plate with respect to input source location and the number of sensors (입력소스의 위치와 센서개수에 따른 평판에서의 시간반전램파의 공간집속성능 규명)

  • Seo, dae jae;Park, huyn woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.722-725
    • /
    • 2014
  • The spatial focusing of time reversal Lamb waves on a plate has attracted considerable attention for identifying the location of an input source. This study investigates the spatial focusing performance on a plate with respect to the number of piezoelectric (PZT) sensors for varying locations of input sources. In particular, a small number of PZT sensors produce spatial focusing through the virtual sensor effect due to reflection of Lamb waves at plate edges. The spatial focusing performance with respect to the number of PZT sensors is quantified in terms of signal to noise ratio through numerical simulation and its implication is discussed.

  • PDF